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Phase-driven progress in nanophotonic biosensing
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Abstract
In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a
recent development involved the engineering of an atomically thin Ge2Sb2Te5 layer on a silver nanofilm to generate
large Goos–Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10−7 RIU.

Early developments in nanophotonic biosensing focused
on exploiting the unique optical properties of nanoma-
terials, such as plasmonic nanoparticles and photonic
crystals1, to enable label-free and real-time monitoring of
biological interactions. Leveraging phenomena like sur-
face plasmon resonances and whispering gallery modes to
detect minute changes in refractive index now allows the
detection of biomolecular interactions at the single-
molecule level with implications for clinical diagnostics.
Recent technical advances2 include the integration of
metamaterials and advancements in fabrication techni-
ques, like nanoimprint lithography, which have enabled
the development of low-cost, compact and portable bio-
sensing devices.
Simultaneously, there is an ongoing quest to further

enhance the sensitivity of nanophotonic biosensors,
especially by exploiting phase phenomena associated with
photonic resonances. The goal is to enable label-free
sensing technology with a maximized refractive index
resolution while reducing the requirements in nanofab-
rication, setup complexity, and cost.
In recent decades, successful applications of detection

schemes utilizing spectral or angular information, along
with intensity-based read-out approaches as transducers,
have been observed in label-free biomolecular detection
using nanophotonic sensors. These advancements have
led to the development of various platforms that exhibit
competitive or, in some cases, superior, sensitivity com-
pared to the diagnostic standard ELISA. However,

improving the performance typically entailed a relatively
high system complexity. Fortunately, new alternative
approaches promise to achieve high sensitivity in simpler
platforms by exploiting steep phase responses.
Two parallel paths are being explored for phase-driven

progress:
1. Direct phase interrogation: This method uses

interferometry to directly interrogate photonic
resonances. It has shown promise in both plasmonic3

and dielectric4 platforms, offering enhanced sensitivity
and potential for miniaturization.

2. Phase-enhanced, indirect detection: Another approach
leverages phase phenomena, for instance, enhanced
intensity-based detection. Recently, there has been
significant interest in topologically protected phase
singularities5,6 and amplified Goos–Hänchen-shifts7

for biosensing.
In their recent paper published in Light Science &

Applications (LSA), Zhu et al.8 have achieved significant
progress in Goos–Hänchen (G–H)-shift-based sensing.
Their method specifically generated singularized phase
responses through the integration of an atomically thin
layer of Ge2Sb2Te5 (GST) on a silver nanofilm. G–H-
shifts are small lateral beam displacements associated
with total internal reflection and interference of phase-
shifted components of the beam, leading to a dependence
of the shift on the refractive index at the interface due to
evanescent waves. Since the G–H shift is proportional to
the phase shift differences acquired upon total internal
reflection, the small beam displacements that are acquired
with single-layer dielectric interfaces can reach hundreds
of microns due to steeper phase responses arising from
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resonances and enhanced absorption with additional
materials.
Zhu et al.8 show that the phase singularity associated

with the engineered absorption in the GST layer resulted
in a steep phase curve (Fig. 1b) and unprecedented posi-
tion shifts of up to ~440 µm, which is higher than pre-
viously achieved even with similar approaches. Since the
authors target their technology at medical diagnostics
beyond typical laboratory settings, they characterized the
noise of their system in addition to the sensitivity,
demonstrating a limit-of-detection (LOD=Noise/Sensi-
tivity) of ~7 × 10−7 RIU. This result is superior to several
simpler direct phase interrogation approaches (LOD
down to ~10−6 RIU) and close to some direct phase-
sensitive SPR modalities (resolution ~10−8 RIU). How-
ever, it should be noted that some of these reported
findings in phase-sensitive modalities are not based on the
above-defined LOD with its proportionality to the system
noise, which, in an un-stabilized biosensing system with
temperature- and mechanical drift, can greatly surpass the
theoretical phase-resolution.
Zhu et al.8 further verified the label-free detection of

small cytokine biomarkers (e.g., TNF-α, 17.3 kDa) down
to a concentration of 0.1 fM, which represents an order of
magnitude improvement compared to similar approaches.

For future validation, however, these proof-of-principle
detection limits would need to be confirmed in complex
matrices, such as serum, with adequate biochemical
controls.
A relevant difference between sensors based on, for

instance, plasmonic and dielectric nanohole arrays9 and
on G–H shift detection is the imaging capability. While
hyperspectral imaging, intensity-based or direct inter-
ferometric approaches3,4 with resonant metasurfaces,
allows imaging of refractive index distributions on the
sensor surface and imaging-based, multichannel detec-
tion10,11, G–H-shift-based platforms are currently not
imaging-based. Despite the impressive sensitivity, the
simultaneous detection of multiple biomarkers for suffi-
cient clinical accuracy with high throughput represents
one of the challenges going forward.
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Fig. 1 Singular-phase-enhanced Goos–Hänchen shift in the context of the indirect and direct harnessing of phase behavior in
nanophotonic biosensing. a Schematic of phase behavior and direct phase interrogation with polarization beam shearing, based loosely on a
phase-sensitive plasmonic biosensor3 and an interferometric dielectric platform4. b Schematic based on Zhu et al.8
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