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Abstract
Machine learning with optical neural networks has featured unique advantages of the information processing
including high speed, ultrawide bandwidths and low energy consumption because the optical dimensions (time,
space, wavelength, and polarization) could be utilized to increase the degree of freedom. However, due to the lack of
the capability to extract the information features in the orbital angular momentum (OAM) domain, the theoretically
unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural
network model. Here, we demonstrate OAM-mediated machine learning with an all-optical convolutional neural
network (CNN) based on Laguerre-Gaussian (LG) beam modes with diverse diffraction losses. The proposed CNN
architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction,
and deep-learning diffractive layers as a classifier. The resultant OAM mode-dispersion selectivity can be applied in
information mode-feature encoding, leading to an accuracy as high as 97.2% for MNIST database through detecting
the energy weighting coefficients of the encoded OAM modes, as well as a resistance to eavesdropping in point-to-
point free-space transmission. Moreover, through extending the target encoded modes into multiplexed OAM states,
we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%. Our work provides a deep
insight to the mechanism of machine learning with spatial modes basis, which can be further utilized to improve the
performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.

Introduction
Artificial neural networks (ANNs) provide a mathema-

tical model that emulates the brain function for machine
learning1, which can be performed in various physical
domains2, such as electronics, optics and mechanics. To
dramatically improve computing speed and energy effi-
ciency3, various photonic computing approaches have
been proposed to construct optical neural networks
(ONNs), wherein different properties of light (e.g. time4,
space5, wavelength6, polarization7) could be utilized for
photonic multiplexing to achieve high parallelism, large-
data throughput and large-scale interconnectivity. As

another unique degree of freedom of light, the orbital
angular momentum (OAM) division8–10 with unlimited
orthogonal states could be utilized to convey information,
creating the concepts of digital spiral imaging11, high-
capacity optical communications12, optically addressable
video holography13–15 and display16, six-dimensional data
storage17, spatiotemporal light fields18, and high-
dimensional quantum entanglement19. However, OAM
has never been adopted to represent the signal of the
input/output nodes in the neural network model.
Photonic matrix-vector operations on various physical

dimensions are necessary to provide the fundamental
building block for ONNs. As such, to physically interpret
OAM information as matrix-vector of ONNs, the input
raw data in the space domain should be transformed into
indistinguishable and large OAM mode combs with most
non-zero amplitude coefficients terms concentrating on
the low-order OAM mode components (Fig. 1a)11,20,
which indicates sparse OAM information feature with
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underlying commonalities. Notably, the straightforward
optical matrix operations in the OAM domain are inac-
cessible21, thus imposing a fundamental challenge of
extracting the OAMmode-feature and reducing redundant
or irrelevant mode components determined by further
end’s applications. As such, although various micron- and
nanophotonic devices designed by physical rules have been
introduced to generate and detect OAM states with helical
wavefronts22–30, neither waveguide-based ONNs5,6,31,32

nor diffraction-based ONNs7,33–35 are capable for OAM-
mediated machine learning because physically these sys-
tems are lack of the OAM selectivity at a micro-scale.
Inspired by the biological behavior of the visual cortex

system, convolutional neural networks (CNNs) have been
put forward to enhance the prediction accuracy through
inserting a convolution-based feature extraction block
before classifying36. Specifically, the parametric com-
plexity of high-dimensional data can be greatly reduced by

CNN after abstracting the features of input data in their
raw form. To construct an all-optical CNN for OAM-
mediated machine learning, it is necessary to further
present an OAM mode selectivity when dispersing the
OAM mode combs. As a specific OAM mode featuring
amplitude distribution described by the Laguerre-
Gaussian (LG) polynomials37, LG modes are capable to
fully represent the spatial structure of a transverse field,
which has been applied in face recognition38 and rota-
tional object imaging39. Physically, LG modes are the
eigen solutions of the paraxial Helmholtz equation, which
inherently results in the distinctive diffraction losses when
they diffract by a finite-sized object40. Thus unique phy-
sical feature gives us the ground to exploit the OAM
mode-dispersion selectivity through diffractive elements
with finite size41.
Here, we demonstrate an entirely new concept of OAM-

mediated machine learning with an all-optical CNN, and

OAM decoders 

ca

b

Convolutional layer

OAM-mediated machine learning

Amplitude Phase

Error backpropagation

Classifier

End-to-end switchable image display 

Encoding
OAM states

W
ei

gh
tin

g 
co

ef
fic

ie
nt

s 
(N

or
m

al
iz

ed
 a

m
pl

itu
de

)

1

–5 –4 –3 –2 –1 0 1 2 3 4 5

……

……

……0

1

0

1

0

1

……

……

……0

1

0

1

0

1

0

1

0

1

0

1

……

……

……

l=

Abnormal
class

Classification

Abnormal
detection

Helical phase

Fork grating

OAM multiplexing
hologram

Target OAM
state(s)

0

2π

2π

2π

2π
0

1

Input data-specific image

OAM modes comb

OAM mode-dispersion impulse
1

0

P
ha

se
 A

m
pl

itu
de

0

0

1

Fig. 1 Conceptual illustration of the OAM-mediated machine learning and the application of all-optical information mode-feature
encoding. a OAM mode combs with normalized weight coefficients of the data-specific images. The pseudo-colors represent different OAM orders
(l). b The architecture of the all-optical CNN for OAM-mediated machine learning, which can be applied to encode a data-specific image into OAM
states. The photonic neural network comprises a trainable convolutional layer which can provide an OAM mode-dispersion impulse to densify the
input OAM mode comb and extract the feature, and successive phase-engineered diffractive layers with finite size as a classifier to reduce the dense
OAM mode spectrum to a couple of target terms due to the OAM mode-dispersion selectivity. c The proposed CNN with an appropriate OAM modes
decoder can be applied in image classification, end-to-end switchable image display, and all-optical abnormal detection, respectively. Due to the
weighting coefficients of the target OAM states are set as amplitude only (without phase differences), only the energy weighting coefficients of the
output OAM spectrum terms are needed to be detected in the last two machine leaning tasks
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further apply it in all-optical information mode-feature
encoding. The architecture of the CNN for OAM-
mediated machine learning is illustrated in Fig. 1b. After
expansion of the input object into OAM mode combs
with complex-amplitude weighting coefficients, a train-
able OAM mode-dispersion impulse has been adopted to
provide a convolution operation in the OAM domain to
densify the input OAM mode combs and extract the
mode-features. Here, the OAM mode-dispersion impulse
is the OAM expansion of a complex-amplitude layer. To
further achieve mode-feature encoding for specific
applications, it is necessary to reduce the dense OAM
mode combs to a couple of target terms, which can be
seen as the compression of OAM mode-features. As such,
due to different diffraction losses of LG modes, the suc-
cessive phase-engineered diffractive layers with finite size
are utilized to implement mode conversion in the LG
mode basis, which can achieve OAM mode-dispersion
selectivity. Notably, through controlling the amplitude
coefficients of the output OAM mode states, the CNN
designed by error backpropagation algorithm can dis-
tribute the dominant energy on targeted OAM states
constituting the output electrical field for encoding.
Finally, the CNN as an encoder, associated with an
appropriate OAM-dependent hologram as a decoder, can
be applied in various applications as shown in Fig. 1c.
Specifically, when the OAM-multiplexing hologram is
applied in decoding, different holographic images can be
reconstructed by different encoded OAM beams15,
resulting in an end-to-end switchable image display.
Moreover, helical phase plates or fork gratings can be
designed to obtain the energy weighting coefficients of the
output OAM mode comb components as OAM spectrum
measurement. For the application of classification, we
only need to find each OAM terms with the dominant
energy weighting coefficients to identify the input sym-
bols. More significantly, the energy weighting coefficients
of the multiplexed OAM states could be utilized to
represent the original images, providing an all-optical
dimension reduction method for improving the efficiency
and robustness of abnormal detection.

Results
Design principle of the CNN
The physical principles of the all-optical CNN, includ-

ing an OAM mode-dispersion impulse and an OAM
mode-dispersion selectivity, are illustrated in Fig. 2. To
realize a common optical convolution in the spatial
domain, a classical 4-f optical setup is needed to super-
pose the electrical fields in the spatial frequency domain
wherein the lens is utilized to perform Fourier transfor-
mation42. In comparison, the superposed electrical fields
in the spatial domain results in the convolution of an
OAM mode comb with an OAM mode-dispersion

impulse (Fig. 2a). For example, the electrical field U of a
handwrite digit “1” can be decomposed into the
complex-amplitude OAM mode comb g(lx) through
U ¼ P

lxgðlxÞ expðilxφÞ. When imprinted on the
complex-amplitude field E comprising two OAM mode
components ly=−1 and 1, the complex-amplitude weight
coefficient of each OAM mode component lx is multiplied
by the OAM mode-dispersion impulse h(ly) provided by
the complex-amplitude field E ¼ P

lyhðlyÞ expðilyφÞ and
then superposed. As such, it can be mathematically
defined as a one-dimensional convolution operation and
the OAM mode-dispersion impulse h(ly) is denoted as the
convolution kernel (Supplementary Note 1)43. Notably,
the convolution with an OAM mode-dispersion impulse
provides an effective method to increase the limited OAM
mode comb components with non-zero amplitude coef-
ficients (Supplementary Fig. S1), laying the physical
foundation to extract the features of input OAM mode
combs in machine learning.
Next, the diffraction losses of distinctive LG modes are

analyzed to illustrate the capability to control the evolu-
tion of the OAM mode combs (Fig. 2b). Here, the dif-
fraction loss δl,p is defined as the reduced amplitude of
LGl,p mode (the OAM order is l and the radial index is p)
caused by the finite size of the diffractive layer. Without
losing generality, the model of a single diffractive layer is
adopted (Supplementary Note 2). As a result, the rela-
tionship between scaling factor a/w, and the diffraction
losses is given for LG0,0, LG0,1, LG1,0, LG1,1, LG2,0, and
LG2,1. Here, 2a and w represents the width of the dif-
fractive layer and the beam waist, respectively. As such,
the evolution of the OAM mode combs can be further
obtained after decomposing them into the LG mode basis
(Supplementary Note 3, Supplementary Fig. S2). For
example, as shown in the lower panel of Fig. 2b, the dif-
fraction loss of the LG mode basis of the handwrite digit
“1” is given, and the normalized amplitude of the OAM
mode component with l= 0 improves remarkably (Sup-
plementary Note 4). It can be concluded that an OAM
mode-dispersion selectivity can be achieved for the dif-
fractive systems with finite size. Then the OAM mode
comb can be converted into the target OAM state
through the mode conversion by the deep-learning based
diffractive layers, in which the LG mode basis is adopted
as the target label. Here, we verified the analysis above by
experimentally converting a specific category of images
with various squatting poses into LG4,0 through two
cascaded diffractive layers with finite size, wherein a
helical phase featuring dominant OAM mode component
with l= 4 for mode conversion appears in the second
diffractive layer (Supplementary Note 5, Supplementary
Fig. S3).
To achieve high-accuracy information mode-feature

encoding, harnessing the OAM mode-dispersion impulse
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for feature extraction and the OAM mode-dispersion
selectivity for classifying leads to the design of CNN,
which can encode given images into various corre-
sponding OAM states (Methods, Supplementary Fig. S4).
Here, the learning task assigned to the CNN with a single
convolutional layer and five diffractive layers is to encode
the images of the handwritten digits [Modified National
Institute of Standards and Technology (MNIST)] database
into (LG9,0, LG7,0, LG5, 0, …, LG-9,0) with an OAM order
interval △l= 2. This tunable mapping relationship has

been chosen to balance the high accuracy in encoding and
the low crosstalk in decoding (Supplementary Fig. S5). As
the beam size of the encoding modes doesn’t have obvious
effects on the encoding accuracies (Supplementary Fig.
S6), the encoding modes with same beam waists have
been chosen in the CNN scheme throughout this manu-
script. Notably, the weight coefficients of the OAMmode-
dispersion impulse are trained directly in the CNN, which
is significantly different from the previous free-space dif-
fractive neural networks (DNNs) (Supplementary Note 6).
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In our architecture, the OAM mode-dispersion impulse
components are determined by the OAM orders of the
target LG modes. Moreover, to generate labeled LG
modes with specific amplitude and phase distributions, a
multi-task learning method is adopted in the design of
loss function. After that, the CNN learns to distribute
more power to the target encoding OAM states (Fig. 2c,
Supplementary Fig. S7). To characterize the performance,
the numerical testing encoding accuracy of the CNN can
achieve 96.0% when trained by the MNIST test dataset
(Fig. 2d). By further improving the classifier to 10 dif-
fractive layers, the encoding accuracy could increase to
97.2% (Supplementary Fig. S8). Here, ten classes of images
in the EMNIST dataset have been selected for mode-
feature encoding, a similar encoding accuracy illustrates
the robustness of the CNN (Supplementary Fig. S9). To
illustrate the necessity of the OAM mode-dispersion
impulse for mode-feature machine learning, the perfor-
mances of the CNN and free-space DNN have been
compared. To visualize the processes of these two neural
network schemes, the similarities between ten randomly
selected digital images in separate classes using OAM
mode-features convoluted with/without OAM mode-
dispersion impulse have been compared using the para-
meter of Euclidean distance (ED) (Materials and Meth-
ods). As can be seen, the convolutional operation with the
trained OAM mode-dispersion impulse can increase EDs
between the input OAM mode combs and decrease the
similarities, resulting in an increase of the encoding
accuracy from 70% to 96% (Supplementary Fig. S10).

All-optical intelligent OAM-encoding of data-specific
images for anti-eavesdropping wireless image
transmission
For free-space communication using optical carrier to

transfer information through an unguided channel44,
OAM encoding enables not only high-density date
transmission but also the improvement of security45,46,
which is especially suitable for the atmospheric
turbulence-free links ranging from inter-satellite or deep
space mission to indoor directed wireless optical com-
munications (WOCs)47,48. However, the current electro-
nic computing for OAM encoding result in the challenges
of the operation frequency gap and the computation
efficiency of the whole information system. Here, OAM-
mediated machine learning for all-optical information
mode-feature encoding removes this hurdle. In the
encoding part, four spatial light modulators (SLMs) were
utilized to implement all-optical machine learning using a
CNN comprising an input layer, a single convolutional
layer and two diffractive layers, respectively. Three cate-
gories of Fashion MNIST database (T-shirt, Trouser and
Ankle boot), 100 images in each category, were trained to
be converted into LG1,0, LG3,0 and LG5,0, respectively

(The amplitude/phase distributions of the convolutional
layer and the classifier can be seen in the Supplementary
Fig. S11). Limited by the phase/amplitude-only modula-
tion capability, the amplitude part of the convolution
layer, combined with the input image, was imprinted on
the first SLM. After a propagation distance of ~3m, the
OAM information of the encoded beam was detected
through adding diverse helical phase plates on the last
SLM for inverse mode conversion.
To be specific, as illustrated in Fig. 3a, a 632.8 nm beam

from a He-Ne laser, passed through a half-wave plate
(HWP) in combination with a polarization beam-splitter
(PBS), which was used to continuously adjust the laser
power. Through a beam expansion system consisting of
50-mm- and 400-mm- focal length- convex lenses, the
light beam was illuminated on the first spatial light
modulator (SLM, Hamamatsu, X13138). To achieve the
amplitude-only modulation, two quarter wave plates
(QWPs) were placed in the front and back of SLM 1.
Through a 4-f system consisting of two convex lenses with
250-mm- focal length-, the electrical field including the
amplitude part of the input image associated with the
convolutional kernel was conjugated onto the SLM 2
(Holoeye, Pluto-2-NIR-011) where the phase part of the
convolutional kernel was imprinted. After another 4-f
system with an additional free-space propagation distance
of 5 cm, the next two SLMs (SLM 3 and SLM 4, Hama-
matsu, X13138) with a spacing distance of 15 cm were
utilized to construct the classifier of the all-optical CNN.
By inserting a folding mirror, the intensity of the encoding
OAM modes at the output layer were separated and
observed after a 15-cm propagation distance from SLM 4.
In the application of WOC, the encoded OAM mode,
after a ~3-m propagation distance, was illuminated on
SLM 5 (Holoeye, GAEA-2-VIS-036). Finally, the OAM
information was obtained by analyzing the intensity dis-
tributions collected in the CCD camera (Basler, acA2040-
90uc).
For different input images, the experimental and theo-

retical results of the intensity distributions in the output
layer are given in Fig. 3b. As can be seen from the OAM
information detected after propagation in Fig. 3c, the
designed CNN is capable of selectively distributing rela-
tive stronger energy into the target OAM modes corre-
sponding to the input images. Here, the overall encoding
accuracy was 93.3% using 30 images from the Fashion-
MNIST test dataset (Fig. 3d). Notably, the lateral offset
results in an inherent uncertainty in the measurement of
OAM information. As such, the images encoded in this
way are resistant to eavesdropping. To simulate the case
that the eavesdropper could be compromised is the
receiver located within a propagation divergence angle of
~0.00048° by alignment error, the OAM information was
detected by adding a lateral offset on the last SLM for
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comparison. With an increasing deviation, the OAM
components with the dominant energy differed from the
target encoding OAM orders (Fig. 3e). As such, the
encoded information was extremely difficult to infer, and
the security of the WOC link was enhanced. Notably, a
mode sorter can be applied in the detection of the OAM
spectrum of the output beams, which can improve the
detection efficiency (Supplementary Fig. S12)29. In addi-
tion, an OAMmultiplexing hologram can be incorporated
into the decoding part to achieve end-to-end switchable
image display, which offers a pathway to realize all-optical
information encoding, transmission, and display (Meth-
ods, Supplementary Fig. S13).

All-optical dimension reduction for abnormal detection
More than a single OAM mode, introducing multi-

plexed OAM states as target encoding modes provides an
unprecedented method for all-optical dimension reduc-
tion, which has significant impact on various further
image sensing tasks, e.g. abnormal detection. Here, the
CNN, with an output vector basis comprising six OAM
states (l=−9,−6,−3,3,6,9), has been trained as an all-
optical mode-feature encoder for two categories of car
images (Fig. 4a). Therein, 80 “BUS” images have been
encoded into (1,1,1,0,0,0) while 80 “SUV” images have
been encoded into (0,0,0,1,1,1) in the training process,
respectively. It is worthwhile mentioning that the
weighting factors of several superposed LG modes with
radial index p= 0 are optimized to obtain the target
encoded mode basis (Supplementary Fig. S14). As an all-
optical decoder to achieve the OAM information
through a single measurement, we designed a fork grat-
ing containing six OAM states with the similar Fourier
coefficients (Methods, Supplementary Fig. S15)49. After
the decoder, the encoded image information after
dimension reduction has been further applied in abnor-
mal detection in our experiment. More than the previous
two categories of images, the encoded mode-features of
abnormal images have also been obtained through the
all-optical CNN associated with the decoder. After
principal component analysis (PCA) and spectral clus-
tering (Supplementary Note 7), the accuracy of OAM-
mediated machine learning for abnormal detection can
be achieved.
As an example of optical inference, the intensity dis-

tributions after the decoder are given when four normal
images and four abnormal images are selected as the input
of the CNN for modes dimension reduction (Supple-
mentary Fig. S16). After analyzing the intensities in each
white dashed area representing each OAM basis, the
images with a resolution of 256*256 can be compressed
into 1*6 matrix (Fig. 4b). Then, a PCA was performed on
all these 6-dimensional feature vectors, wherein the first
two principal components were normalized to a similar

scale and illustrated in the left panel of Fig. 4c. Notably,
the data points corresponding to the anomalous car
images can be separated from the other categories of car
images, which provides the ground truth labels for cal-
culating the percentage of recognizing anomalous images
as well as classifying the normal images. Through com-
paring the data after spectral clustering algorithms, the
confusion matrix can be obtained with an overall accuracy
of 85%, the true-positive rate of classifying the abnormal
image is 90.0% and the false-positive rate is 5.26%,
respectively (Fig. 4d).

Discussion
The OAM-mediated machine learning with all-optical

CNNs provides a universal mechanism to transform the
data feature into the OAM states, which can remove the
hurdle of optically OAM information encoding towards
higher-throughput and lower latency image-sensing
applications. In the specific application of wireless image
transmission, the proposed CNN with a high encoding
accuracy opens the door to encode the specific databases
and images at the speed of light, leading to an all-optical
anti-eavesdropping WOC system due to the inherent
ultrasensitive measurement requirements of OAM infor-
mation. Furthermore, the employment of multiplexing
mode states as target encoding states of the CNN can
break the bottleneck of optically dimension reductions in
the OAM domain, reaching a compressing ration of ~104

in comparison to the input data in the space domain.
Along with a phase-only OAM mode-dispersion

impulse50, the phase-only CNNs for OAM-mediated
machine learning can be achieved. To reduce the expen-
ses of the system, the SLMs can be replaced by the passive
optical elements, such as the compact planar optical ele-
ments based on metasurface holograms51,52 and patterned
liquid crystals holograms53,54. To achieve the high degree
of the device integration, one can adopt nanophotonic
and optoelectronic devices with high spatial resolution
and physical connectivity to construct the on-chip CNN
with a high neuron density55–57. In terms of the paralle-
lism, the large-area diffractive devices are also desired to
achieve high-efficient all-optical machine learning-based
information mode-feature encoding58. In addition to
encoding into the OAM dimension of LG modes, the
CNN proposed here can also be extended to encoding the
LG modes with the distinctive radial index, which can
further increase the capacity of optical systems59. It can be
expected that with experimental realizations of free-space
ONN-based OAM sensing technologies60, the proposed
CNN associated with representation learning can facilitate
various applications including all-optical machine
learning-based high-capacity holographic communica-
tions, LIFI, cellular deformation classification, and face
similarity recognition.
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Materials and methods
Forward propagation model and error backpropagation of
the CNN
Forward propagation model
The forward model of our CNN architecture in the

TensorFlow implementation is summarized in Supple-
mentary Fig. S4. The input mode at layer 0 h0i is usually a
complex-amplitude value, which can carry information in
its phase and/or amplitude channel. After the convolu-
tional layer, the wave function u0i generated by the
interaction between the input light field h0i and the OAM
mode-dispersion impulse c0i can be written as

h0i ¼
Pþ1

l¼�1~Al expðjlϕÞ
c0i ¼

Pþ1
l¼�1~Bl expðjlϕÞ

u0i ¼ h0i c
0
i

8><>: ð1Þ

where eAl and eBl represent the complex-amplitude
weighting coefficients of the OAM mode spectrums,
respectively, and i represents the i-th neuron located at
(xi, yi).

Following the angular spectrum diffraction equation,
the complex-amplitude field of each neuron passing
through the classifier of the given CNN can be expressed
as

unþ1
i ðx; yÞ ¼ =�1f=funi ðxi; yiÞtni ðxi; yiÞgHðf x; f yÞg

ð2Þ
where n represents the n-th layer of the classifier of the
CNN. Moreover, = represents the Fourier transform, and
=�1 represents the inverse Fourier transform. The
transmission coefficient of a neuron is composed of
amplitude and phase terms, i.e., tni ðxi; yiÞ ¼
An
i ðxi; yiÞ expðjφn

i ðxi; yiÞÞ. For a phase-only CNN architec-
ture in our experiment, the amplitude An

i ðxi; yiÞ is
assumed to be a constant, ideally 1. Hðf x; f yÞ is the

transfer function in the spatial frequency domain and the
phase delay factor related to propagation distance d, i.e.

expððj2πd=λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðλf xÞ2 � ðλf yÞ2

q
, λ is the illumination

wavelength, j ¼ ffiffiffiffiffiffiffi�1
p

. Accordingly, the forward propaga-
tion model can be described. If the CNN design is
composed of M layers (excluding the input and output
planes), a complex field can be obtained in the output
plane, which is expressed as

uMþ1
i ¼ aMþ1

i þ bMþ1
i j ð3Þ

where aMþ1
i and bMþ1

i represent the real part and
imaginary part of the output light field, respectively.
When compared with the target label, the error is
propagated back to update the layer of CNN iteratively,
which is described in detail below.

Error backpropagation
To train the CNN, the error back propagation algorithm

and the random gradient descent optimization method
are implemented on TensorFlow framework. A loss
function is defined to evaluate the inconsistency between
the target real value uMþ1

i and the predicted value of the
network output, which is termed as the mean square error
(MSE). And the target real value can be written as:

uMþ1
i ¼ aMþ1

i þ b
Mþ1
i j ¼

Xþ1
l¼�1Cl expðjlϕÞ ð4Þ

where Cl represents the amplitude-only coefficients
(without phase differences) of the OAM mode comb.
aMþ1
k and b

Mþ1
k represent the real part and imaginary part

of the target light field, respectively. Specifically, the loss
function of the CNN is given as

Loss ¼ α
1
k

X
k
aMþ1
k � aMþ1

k

� �2 þ β
1
k

X
k

bMþ1
k � b

Mþ1
k

� �2

ð5Þ

where k refers to the number of measurement points at
the output plane. The parameters (α and β) represent the
adjustment coefficients of the two loss functions, respec-
tively (Throughout this manuscript, α= β= 0.5). To meet
the objective requirements, the relevant parameters are
optimized through continuous iterations of the neural
network to minimize the loss function.

Specifically, our CNN architectures were trained using
Python (v3.9.7) and TensorFlow (v2.6.0, Google Inc.) on a
server with a NVIDIA Quadro P4000 graphical processing
unit (GPU), and Intel(R) Xeon(R) W-2133 central pro-
cessing unit (CPU, Intel Inc.) and RAM of 32 GB. The
batch size and learning rate were set as 100 and 0.03,
respectively. The resolution (neuron number) of each
layer of the classifier was 256*256, 256*256, and 400*400
for Figs. 2–4, respectively. Finally, the complex-amplitude
of the convolutional layer and the phase distributions of
the classifier were achieved after 2000, 4000 and 4000
epochs for Figs. 2–4, respectively.

Calculation of Euclidean distance using OAM mode basis
Usually, the Euclidean distance (ED) is a measurement

of the straight-line distance between two points in
Euclidean space. In two-dimensional space, the ED
between two points can be calculated by the length of the
line segment connecting the two points. In higher-
dimensional spaces, the calculation is similar, but
involves more coordinates. Here, the information has
been expressed into OAM basis to achieve OAM-
mediated machine learning. As such, the ED of two
matrix-vectors Xk and Yk using OAM mode-features can
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be expressed as

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXLength
k¼1

ðXk � Y kÞ2
vuut ð6Þ

where the vector elements of the Xk and Yk are
represented by the energy (square of the amplitude)
weighting coefficients of the OAM mode components
constituting the electrical fields.

Design of the OAM multiplexing hologram for end-to-end
switchable image display
The conceptual illustration of OAM-mediated machine

learning-based end-to-end switchable image display is
shown in Supplementary Fig. S13a. In comparison to the
application in Fig. 3, the significant difference is
the information can be displayed at the receiver. As such,
the decoding process using the electrical circuits is further
replaced.
And the optical setup in Fig. 3a was utilized to

demonstrate this concept. The CNN was designed to
encode two handwritten “digit” images (“1” and “2”) into
the LG4,0 and LG-4,0, respectively. After a 3-meter propa-
gation distance, the encoding beam illuminated on the
OAM multiplexing hologram which was imprinted on the
last SLM. The design of the OAM multiplexing hologram
is shown in Supplementary Fig. S13b. Firstly, the phase-
only OAM preserved holograms of these two handwritten
“digit” images are designed through an iterative Fourier
transformation algorithm. After complex superposing
these two OAM-preserved holograms encoded with heli-
cal phases distributions with l= 4 and −4, the final phase
term was used as OAM-multiplexing hologram. In the
experiment, when a handwritten digit image (as well as the
amplitude of the convolutional kernel) was imprinted on
the first SLM, the images were observed on the CCD
camera (Supplementary Fig. S13c). Notably, the task of
switchable image display, including encoding, transmis-
sion, and display, was performed at speed of light.

Design of fork gratings for detecting OAM information of
encoding light beams through a single measurement
To decode the OAM information of encoding light

beams through a single measurement, a fork grating
function was designed to convert OAM components into
Gaussian modes at different positions. The transmission
function of the fork grating f(φ) can be expressed as

f ðφÞ ¼
X
m

Alm expðilmφÞ expðigmÞ ð7Þ

where lm and Alm denote the OAM order and the
amplitude weighting coefficient of the elementary grating

function gm, respectively. Obviously, f(φ) appears in a
complex-amplitude form normally.
To achieve an approximate form for the phase-only

grating function g(φ), which can be defined as

gðφÞ ¼ exp½ipðφÞ� ð8Þ

where p(φ) can be expressed as

pðφÞ ¼ Re �i ln
XN
m¼1

Blm expðilmφÞ expðigmÞ
" #( )

ð9Þ

where Blm is a decisive factor for p(φ), Re{} denotes the
symbol of “real part”, Expanding g(φ) into the Fourier
series given by

gðφÞ ¼
X1

m¼�1
Clm expðilmφÞ expðigmÞ ð10Þ

where the decomposition coefficient Clm can be expressed as

Clm ¼ 1
2π

Z 2π

0
gðφÞ expð�ilmφÞ expð�igmÞdφ ð11Þ

Limited by the phase-only SLM in our experiment, the
optimizing algorithm introduced below is adopted to
ensure the phase-only transmission function g(φ) and the
original function f(φ) are approximately consistent. Firstly,
ηm, the diffraction efficiency of the grating at the mth-
order, is defined as

ηm ¼ Clm

Cl
ð12Þ

where Cl ¼ ð1=2πÞR 2π
0 gðφÞ expð�ilmφÞdφ represents the

total energy.

Afterwards, another parameter U is adopted to evaluate
the diffraction efficiency and uniformity among different
diffraction orders simultaneously,

U ¼ 1� ηmðmaxÞ � ηmðminÞ
ηmðmaxÞ þ ηmðminÞ ð13Þ

Here, ηm (max) and ηm (min) represent the maximum
and minimum values of ηm, respectively.
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The flow chart to obtain the phase-only fork grating
function is shown in the figure below.

Initialization with {Blm} equal to {Alm}
Iteration counter n=1

Construct g(ϕ) using {Blm}

Adjust {Blm}
n =n+1

Calculate g(ϕ) and obtain {ηm}

Save g(ϕ)

Output saved g(ϕ)

n >N ?
NO

NO
U decrease ?

YES

YES

As an initiation of the process, we set Blm=Alm and the
iteration counter n= 0. According to Eqs. (9)–(11), ηm
and U can be calculated. When the iteration counter n is
less than the pre-set number N, the phase-only grating
g(φ) is optimized through continuously updating the Blm.

jB0
lm j ¼ jBlm j þ βðjAlm j � jClm jÞ

B
0
lm ¼ jB0

lm
j

jClm j � Clm

ð14Þ

Here, || denotes the symbol of the “amplitude part”.
And β is a constant representing the update rate. Finally, a
phase-only fork grating function featuring different OAM
orders in different diffraction orders with high efficiency
and high uniformity can be obtained. The performance is
shown is shown in Supplementary Fig. S15. When the
fork-grating in Supplementary Fig. S15a was illuminated
by the Gaussian beam, the intensity distribution is shown
in Supplementary Fig. S15b. To obtain the OAM order
and intensity of each spot, the fork-grating was illumi-
nated by the OAM beams with l ranging from −9 to 9
with an interval of 3. Due to the OAMmode conservation,
the Gaussian spot appears in different positions (Supple-
mentary Fig. S15c). As can be seen from Supplementary
Fig. S15d, the uniformity of this fork grating is 0.942.
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