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Motion of charged particles in bright
squeezed vacuum
Matan Even Tzur 1✉ and Oren Cohen 1

Abstract
The motion of laser-driven electrons quivers with an average energy termed pondermotive energy. We explore
electron dynamics driven by bright squeezed vacuum (BSV), finding that BSV induces width oscillations, akin to
electron quivering in laser light, with an equivalent ponderomotive energy. We identify closed and open trajectories of
the electronic width that are associated with high harmonic generation and above-threshold ionization, respectively,
similarly to trajectories of the electron position when its motion is driven by coherent light. In the case of bound
electrons, the width oscillations may lead to ionization with noisy sub-cycle structure. Our results are foundational for
strong-field and free-electron quantum optics, as they shed light on ionization, high harmonic generation, and
nonlinear Compton scattering in BSV.

Introduction
The ponderomotive energy scale Up is the cycle aver-

aged energy of a charged particle interacting with a clas-
sical, monochromatic, linearly polarized, electric field. It is
a key figure of merit in the theory of high-field ioniza-
tion1,2, high harmonic generation3,4, and plasma phy-
sics5,6. Compared to the natural energy scales of a system
at hand, the scale of Up determines the transition between
regimes in light matter interactions. A prominent exam-
ple is the transition between the multi-photon and tunnel
ionization regimes of atoms, which is determined by the
Keldysh parameter1 γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ip=2Up
p

, in which Ip is the
ionization potential of an atom. Up is given by the famous
formula (atomic units throughout):

U cð Þ
p ¼ e2E2

a=4mω2
p ð1Þ

in which e is the electron charge, Ea is the peak amplitude
of a monochromatic & linearly polarized electric field of
frequency ωp, and m is the mass of the electron. A
superscript (c) was added to indicate that this ponder-
omotive energy is ‘classical’, in the sense that it

corresponds to the energy of a classical electron in a
classical field, as derived by Newton’s equations of motion.

The ponderomotive energy scale is associated with
quiver motion. A quivering particle oscillates back and
forth in space at the frequency of a driving laser, following
a trajectory prescribed by the driving laser field. While
almost interchangeable with light-induced motion, any
sinusoidally oscillating force will induce a quiver motion
with an average ponderomotive energy. In the case of
(classical) electromagnetic waves & charged particles, this
force is the Lorentz force. Notably, if light carries a van-
ishing coherent electric field amplitude Ea= 0, the sinu-
soidally oscillating Lorentz force vanishes, and Eq. (1)
yields U cð Þ

p ¼ 0 (i.e., the particle stands still).
At the same time, there are many indications that

coherent motion of matter may be induced even by
quantum fields carrying a vanishing electric field ampli-
tude. A recent prominent example in this context is the
interaction of bright squeezed vacuum (BSV) with various
phases of matter, in different regimes7. Perturbative
nonlinear optical processes8,9 and photoionization10 dri-
ven by BSV were already observed experimentally.
Remarkably, BSV has been shown to significantly boost
the efficiency of these processes by orders of magnitude,
indicating a significant potential for technological impact,
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e.g., in miniaturization of harmonic generation and
ultrafast photoelectron sources.
In the contexts of high harmonic generation11,12 and

nonlinear Compton scattering13, a BSV drive was similarly
predicted to results in an enhanced efficiency and broader
emitted spectrum. Squeezing also provides an additional
degree of freedom for attosecond spectroscopy, as it shifts
& shapes the emitted attosecond pulses during HHG12.
Additionally, driving the HHG process by squeezed light
is predicted to result in squeezed harmonics14, com-
plementing other HHG-based sources of quantum
light15,16. Squeezed high harmonics eliminate the most
fundamental limitation from ultrafast optical inter-
ferometry: vacuum fluctuations. State of the art inter-
ferometers17 already achieve zeptosecond (10−21 s)
resolution, approaching the yoctosecond-scale (10−24 s)
limit enforced by vacuum fluctuations12. Yet, as BSV
carries a vanishing coherent electric field amplitude,
exhibiting only electric field fluctuations, the foundational
concepts of quiver motion & ponderomotive energy are
inapplicable, limiting our understanding of BSV-driven
sources of extreme light11,13 & fast electrons10.
Here we generalize the concepts of quiver motion and its

associated ponderomotive energy for charged particles in
quantum light fields, focusing on the multi-mode
squeezed vacuum state. More generally, we explore sub-
cycle motion of free & bound particles driven by bright
squeezed vacuum. We calculate numerically the motion of
a free electron driven by a bright squeezed vacuum field.
We find that free electrons in bright squeezed vacuum
undergo width oscillations, i.e., coherent stretching and
squeezing in real space. We show numerically and analy-
tically that the cycle-averaged energy associated with these
width oscillations, namely, the quantum ponderomotive
energy U ðqÞ

p , is equal to the classical ponderomotive energy
U cð Þ

p for equally intense BSV and coherent fields. Fur-
thermore, we found that the width oscillations exhibit
closed and open trajectories that contribute to HHG and
ATI, respectively, similarly to displacement trajectories
when the motion is driven by coherent light. In the case of
bound electrons, we find that such width oscillations may
be violent enough to induce ionization (and recombina-
tion), which follow noisy sub-cycle dynamics. Our results
are foundational to extreme nonlinear quantum optics, as
they provide insight to the underlying mechanisms of
nonlinear Compton scattering13, HHG11,12, and ioniza-
tion10 when they are driven by squeezed vacuum.

Results
Free electron width oscillations and their
ponderomotive energy
We begin by calculating numerically the motion of a free

electron placed in a bright-squeezed vacuum field. We
performed three time evolution calculations for an

electron that initially occupies a gaussian wavepacket in
1D real space gj i / exp �x=4σ2

0

� �
and interacts with: (i) a

single mode of EM vacuum at frequency Ω, 0Ωj i, (ii) a
coherent state D̂ αð Þj0Ωi, and (iii) a single mode of

squeezed vacuum Ŝ rð Þ 0Ωj i. Here, D̂ αð Þ and Ŝ rð Þ are
coherent shift and squeezing operators for the temporal
mode Ω, respectively18. Time evolution of the initial light-

matter state under the Hamiltonian Ĥ ¼ p̂2=2mþ x̂ �
ÊΩ tð Þ is implemented through the (t,t’) method19 (SI
section II). Here, x̂ and p̂ are the electron position and

momentum operators respectively, and ÊΩ tð Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Ω=2ϵ0V

p
âΩe�iΩt þ âyΩeiΩt
� �

is the electric field
operator of the Ω mode (pump), and V is the quantization

volume. We set Ω= 0.11 a.u. and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Ω=2ϵ0V

p ¼ 1 ´ 10�8

a.u. to match the experimentally observed value of vacuum
fluctuations of the order of 50 V cm−1 20. These calcula-
tions yield the time-dependent light matter state Ψ tð Þj i for
each initial driving light state. Finally, a partial trace on the
photonic degrees of freedom is implemented, resulting in

the reduced density matrix of the electron ρ eð Þ
x;x0 tð Þ, whose

diagonal is the real-space electron density, (equivalent to

ψe x; tð Þ�� ��2 for pure states). Figure 1a–c present the density
ρ eð Þ
x;x tð Þ for the three examined cases. Notably, while the
coherent state induces a quivering displacement motion
x̂ tð Þh iCS ≠ 0, that matches the Newtonian trajectory of a
charged particle, the squeezed vacuum state results in a
vanishing displacement x̂ tð Þh iSV ¼ 0. Examining the width

of the wavepackets ΔX2 ¼ x̂2 tð Þ� �� x̂ tð Þh i2, we find that
for the EM vacuum & coherent state fields, the Gaussian
wavepacket expands according to the analytical formula
ΔX2 tð Þ ¼ σ2

0 1þ t2=4σ4
0

� �
(Fig. 1d). In contrast, the width

of the SV driven electron is periodically modulated, exhi-
biting coherent stretching & squeezing dynamics in real
space, superimposed on the quadratic expansion of the
Gaussian wavepacket. Figure 1e presents the time depen-
dent kinetic energy of the electron obtained from the
numerical calculation, Ekin (t). The cycle-average of Ekin (t)
is the quantum-optical generalization of the ponder-

omotive energy, U qð Þ
p ¼ 1

T

R T
0 Ekin tð Þdt. The numerical

calculation reveals that U qð Þ
p is exactly equal to the classical

ponderomotive energy imposed by an equally intense
coherent state:

U qð Þ
p ¼ 2e2

mϵ0c
Ivac
4Ω2

ð2Þ

Here,m,e are the mass and charge of the electron, ϵ0 vacuum
permittivity, c speed of light. Ivac � c_ΩNSV=V is the
intensity of a squeezed vacuum beam with NSV � sinh2 rð Þ
photons in a quantization volume V, and a frequencyΩ. The
number of photons in a squeezed vacuum state is given by
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NSV ¼ sinh2 rð Þ where r is the dimensionless squeezing
parameter21. In section I of the SI, we derive Eq. (2)
analytically using 2nd order perturbation theory, and
generalize it to multi-mode squeezed light, accounting for
various forms of squeezed light such as polarization squeezed
light and more. For multi-mode squeezed light, the quantum
ponderomotive energy is given by:

U q;multimodeð Þ
p � _e2

4π2m

X
j

Z
d3kj

jν kj
� �j2
ωkj

ð3Þ

Where |ν(kj)|
2 is the number of photons in the kj mode in

the multi-mode squeezed vacuum state. That is, the
ponderomotive energy in multi-mode squeezed vacuum
depends only on the intensity spectrum of the pump.
Notably, these formulas show that the classical formula
for ponderomotive energy, derived through Newton’s
equations of motion, applies to any form of multi-mode
squeezed light, despite the fact the underlying electron
motion is very different from the classical case. Further-
more, as a corollary of our calculation, we find that the

electron experiences a mass renormalization contingent
upon vacuum squeezing, and that it is miniscule for non-
relativistic velocities (Eq. I.24 in the SI).

Closed & open trajectories of the width
When a charged particle is released in a classical elec-

tromagnetic field ∝ cos (ωt) at a position x= 0 and time
t= t0, it may exhibit either closed or open motion
(Fig. 2a). If the electron started its motion after the peak
(node) of the field, i.e., 0< t0=T<0:25 (0:25<t0=T < 0:5), it
will (not) revisit x= 0 at a later time, resulting in a closed
(open) trajectory. The notion of closed & open trajectories
is central to the description HHG and ATI when driven
by a coherent state. For instance, if the electron starts its
motion at the ionization time t0, only ionization times in
the range 0<t0=T<0:25 contribute to HHG and re-
scattering ATI, because they result in closed trajectories.
An analogous phenomenon exists in the context of the
motion of charged particles in squeezed vacuum (Fig. 2b).
A free electron that begins its motion after the anti-
squeezed peak of the SV field variance will exhibit a closed
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trajectory in the sense that its width will revisit the free
propagation width at a later time (at least once). Likewise,
if the electron is released to motion right after the max-
imal squeezing of the field 0:25<t0=T<0:5 it will exhibit
an open trajectory, i.e., it will always be wider than the free
propagation width. In Fig. 2b, we numerically observe the
dynamics of the excess width ΔX2

SVðtÞ � ΔX2
VacðtÞ for a

Gaussian electron wavepacket driven by a single mode of
squeezed vacuum. This is computed by numerically time-
evolving the wavepacket from an initial time t0, calculat-
ing its width ΔX2

SVðtÞ as a function of time, and then
subtracting the width obtained for zero squeezing,
ΔX2

VacðtÞ.
To understand this motion, we consider the perturba-

tive formula for the reduced density matrix of the electron
ρ(e), after interaction with the squeezed vacuum. The
formula, derived using a quasi-probability distribution
approach, reads12:

ρ eð Þ � 1ffiffiffiffiffiffi
2π

p
Evacj j

Z
dEαe

� Eαj j2
2 Evacj j2 ϕEα

tð Þ�� �
ϕEα

tð Þ� �� ð4Þ

Ivac � 1
2
ϵ0c Evacj j2 ð5Þ

where Ivac is the intensity of the squeezed vacuum beam,
and |Evac| is the electric field amplitude of an equally
intense Glauber coherent state. It is also approximately

the amplitude of electric field fluctuations in the anti-
squeezed quadrature of the pump. The wavefunction
ϕEα

tð Þ�� �
solves the following time dependent Schrödinger

equation of a free electron in a classical electric field
Eα ¼ α Ê tð Þ�� ��α� �

i
∂ ϕEα

tð Þ�� �
∂t

¼ � 1
2m

∇2 � ex � Eα cos Ωtð Þ
� 	

ϕEα
tð Þ�� �

ð6Þ
With the initial condition ϕα t ¼ 0ð Þj i ¼ gj i. According to
Eq. (4, 6), the width of the wavepacket is given by

ΔX2ðtÞ � σ20 þ
t2

4σ20|fflfflfflfflffl{zfflfflfflfflffl}
vacuumexpansion

þ hxEvacðtÞi2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Width oscillations

ð7Þ

Where xEvac tð Þh i is the classical displacement of ϕEα
tð Þ�� �

with Eα ¼ Evac, i.e., the displacement an equally intense
coherent state would impose. Because xEvac tð Þh i results in
closed trajectories between 0< t0 < 0:25T , so does ΔX2 tð Þ.
For 0:25T<t0<0:5T , the displacement xEvac tð Þh i represents
an open trajectory, therefore ΔX2 tð Þ does not cross the
vacuum expansion line. Similarly to the case of a coherent
state driver, we anticipate that only closed trajectories of
the width contribute to HHG and re-scattering ATI, when
they are driven by squeezed vacuum. Our reasoning is as
follows: Eq. (7), that describes the width trajectories x2 tð Þh i,
shows that the width trajectories are obtained from an
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average of displacement trajectories, each corresponding to
a coherently driven electronic state ϕEα

tð Þ�� �
(Eq. (4)).

When the width trajectory is closed, the displacement
xEα tð Þh i of each individual ϕEα

tð Þ�� �
in the average exhibits

a closed trajectory, which leads to high harmonics & re-
scattering ATI. Similarly, for open width trajectories, the
individual constituents of the superposition do not follow
closed displacement trajectories, and therefore do not
contribute to HHG & re-scattering ATI.

Sub-cycle dynamics of photoionization driven by bright-
squeezed vacuum
Next, we explore the dynamics of a bound electron in

bright squeezed vacuum by adding a model Xe atomic
potential to the numerical calculation22. This model atom
supports two bound states with energies Eg ¼ 0:44 a.u.
and Ee ¼ �0:14 a.u., as well as a third weakly bound state
with an energy ~0.00014 a.u. and a continuum. We cal-
culate the time evolution of the ground state of this atom

g:s:j iXe when it is driven by BSV and coupled to one
quantized radiation mode (SI section II). Again, we obtain
the time-dependent light-matter state ρ̂ tð Þ and perform a
partial trace on the photonic degrees of freedom to obtain
the reduced density matrix of the atom ρ(atom). Figure 3(b)
presents the populations of the ground and 1st excited
states ρ atomð Þ

gg and ρ atomð Þ
ee , showing Rabi-like oscillations

between these levels. Their total population is nearly flat
with a negative slope, with the slope being the time
averaged ionization rate. Fourier analysis of the atomic
inversion (SI section III) ρ atomð Þ

ee tð Þ � ρ atomð Þ
gg tð Þ shows that

it consists of two distinct spectral peaks. The dominant of
these peaks corresponds to the detuning frequency δ12 ¼
Ee � Eg �Ω ¼ 0:1951 a.u., typical of Rabi-oscillations in
a highly detuned regime18. The 2nd frequency of oscilla-
tions is the transition frequency between the ground and
2nd excited state Ee2 � Eg ¼ 0:44 a.u., which is also
approximately the ionization potential, and is resonant
with the 4th harmonic of the pump.
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Figure 3c shows the time-dependent density of the elec-
tron in real space. It is evident that the electron undergoes
ionization during the interaction, but unlike ionization in a
coherent state of light, it is symmetric to both sides of the
atomic potential well. Time-frequency analysis of the
wavepacket width reveals that the high-frequency compo-
nents of the dynamics occur within half-cycle temporal
windows, with a chirp corresponding to semi-classical
recombination times (SI section III). Figure 3d shows the
time derivative of the total population of all continuum
states, indicative of the rate of ionization. We observe that
this quantity exhibits rapid oscillations between positive and
negative rates, i.e., the system is rapidly switching from net
ionization to net recombination. The amplitude of the
oscillations is in phase with the amplitude of electric field
fluctuations of the squeezed vacuum. We anticipate light
emission (and particularly HHG) to occur during the
recombination bursts, as the electron must release its
kinetic energy in the form of radiation.

Discussion
Proposed experiment
Figure 4 illustrates a proposed experiment for observing

the modulation of the electron wavepacket width by BSV.
A beam splitter splits an ultrashort laser pulse into two
arms. The first arm ionizes a nanotip, generating an
ultrashort propagating electron wavepacket23. In the
second arm, a high-gain spontaneous parametric down-
conversion process in a χ(2) nonlinear crystal creates
broadband squeezed vacuum (BSV) light24. This BSV light
is filtered to obtain a single spatial and temporal mode24.
Subsequently, the BSV pulse is reflected off a mirror, and

directed towards the electron to modulate its width.
Regardless of the BSV pulse’s duration, the width
undergoes sinusoidal modulation as a function of the
relative delay between the ionizing coherent pulse and the
modulating BSV pulse (Eq.(7) and Fig. 4b). This relative
delay is controlled by translating the mirror using a
translation stage. The minimum width of the electron is
predicted to coalesce with the width observed when the
BSV arm is blocked. This minimum width corresponds to
the electron entering the BSV field at the peak of the field
fluctuations, as illustrated in Fig. 2b. Additionally, the
contrast of this modulation increases linearly with the
intensity of the BSV, as depicted in Fig. 4c.

Conclusion
To summarize, we have generalized the classical notions

of quiver motion and ponderomotive energy to a quan-
tum optical context. We have shown theoretically that the
motion of a free electron in squeezed vacuum consists of
periodic stretching and squeezing of its wavefunction in
real space and discovered that it exhibits open and close
trajectories, in a similar fashion to displacement trajec-
tories of electrons driven by coherent light. For the case of
a bound electron, our results shed light on the underlying
dynamics associated with high harmonic generation dri-
ven by BSV and resolve sub-cycle features of ionization.
Additionally, we found that the energy of an electron
interacting with a generalized multi-mode squeezed
vacuum field is exactly equal to the classical ponder-
omotive energy (derived by Newton’s equations of motion
when the electron is driven by a classical field). Our
treatment holds for any mutli-mode form of squeezed
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light, for example, bi-chromatic two-mode squeezed
vacuum25, as well as for polarization squeezed light26.
Looking forward, we expect our results to be directly
applicable to nonlinear Compton scattering13 driven by
BSV and free electron shaping by quantum light27,28, as
both interactions are concerned with a free electron
placed in a squeezed vacuum field. Additionally, as the
presented results generalize the standard building blocks
(Up and quiver motion) of strong-field physics to the
quantum optical regime, we believe our results will play a
foundational role in the emerging field of quantum-
optical strong-field physics, which ranges from quantum
information processing15, explorations of light-matter
entanglement29–34, and more35–38.
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