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Abstract
In response to the COVID-19 pandemic, governments worldwide imposed lockdown measures in early 2020, resulting
in notable reductions in air pollutant emissions. The changes in air quality during the pandemic have been investigated
in numerous studies via satellite observations. Nevertheless, no relevant research has been gathered using Chinese
satellite instruments, because the poor spectral quality makes it extremely difficult to retrieve data from the spectra of
the Environmental Trace Gases Monitoring Instrument (EMI), the first Chinese satellite-based ultraviolet–visible
spectrometer monitoring air pollutants. However, through a series of remote sensing algorithm optimizations from
spectral calibration to retrieval, we successfully retrieved global gaseous pollutants, such as nitrogen dioxide (NO2),
sulfur dioxide (SO2), and formaldehyde (HCHO), from EMI during the pandemic. The abrupt drop in NO2 successfully
captured the time for each city when effective measures were implemented to prevent the spread of the pandemic, for
example, in January 2020 in Chinese cities, February in Seoul, and March in Tokyo and various cities across Europe and
America. Furthermore, significant decreases in HCHO in Wuhan, Shanghai, Guangzhou, and Seoul indicated that the
majority of volatile organic compounds (VOCs) emissions were anthropogenic. Contrastingly, the lack of evident
reduction in Beijing and New Delhi suggested dominant natural sources of VOCs. By comparing the relative variation of
NO2 to gross domestic product (GDP), we found that the COVID-19 pandemic had more influence on the secondary
industry in China, while on the primary and tertiary industries in Korea and the countries across Europe and America.

Introduction
Since early 2020, the novel coronavirus (COVID-19), a

severe infectious disease, began to spread worldwide. In
response to the COVID-19 pandemic, governments
worldwide implemented special measures (lockdowns) to
prevent crowd gathering, which have resulted in a global
reduction in air pollutant emissions1,2. Numerous studies
have been conducted to investigate the variations in air
quality owing to the pandemic. For instance, some studies

have focused on the significant reduction in atmospheric
nitrogen dioxide (NO2) from space-borne observations by
high-resolution instruments, such as the Tropospheric
Monitoring Instrument (TROPOMI) and Ozone Monitor-
ing Instrument (OMI)3,4, based on in-situ monitoring5,6,
and through atmospheric chemical transport modeling7,8.
Satellite-based remote sensing has a distinctive advantage
when compared to surface observations, especially in terms
of spatial coverage and data consistency, which enable us to
easily compare air quality discrepancies in different coun-
tries. For instance, Bauwens et al.3 and Sun et al.9 explored
global changes in the levels of NO2 and formaldehyde
(HCHO) through satellite observations.
The Environmental Trace Gases Monitoring Instru-

ment (EMI) onboard the GaoFen-5 satellite is the first
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Chinese satellite-based ultraviolet–visible hyperspectral
spectrometer (spectral resolution of <0.6 nm). Along with
TROPOMI and OMI, it is also a space-borne high-reso-
lution instrument for air pollutant observation. Because
the original spectral quality of EMI is considerably inferior
to that of TROPOMI, it has thus far not been used for air
quality research during the COVID-19 pandemic. How-
ever, by conducting a series of optimizations from spectral
calibration to inversion settings in our previous stu-
dies10,11, a comparable final inversion data quality with
TROPOMI was achieved. In this study, we used the tro-
pospheric vertical column densities (TVCDs) of multiple
gaseous pollutants observed by EMI to investigate the
variations, potentially caused by lockdown measures, in
air pollutants such as NO2, sulfur dioxide (SO2), and
HCHO across different countries and cities. In addition,
the relationships between the pandemic, economy, and air
quality are discussed.

Results
Retrieval of NO2, SO2, and HCHO from EMI
Launched in May 2018, EMI onboard the Gaofen-5

satellite is a push-broom spectrometer with ultraviolet
and visible spectral bands from 240 to 710 nm and a nadir
spatial resolution of 12 × 13 km2. The basic retrieval
methods for EMI are similar to those for OMI and
TROPOMI. The NO2 TVCDs are retrieved in three steps.
First, the total NO2 slant column density (SCD) is
retrieved using the differential optical absorption spec-
troscopy (DOAS) technique. As suggested by the
QA4ECV NO2 project12, the absorption cross-section of
ozone (O3), NO2, oxygen dimer (O4), water vapor, and
liquid water, as well as ring effect, were considered.
Subsequently, the tropospheric NO2 SCD is obtained after
separating stratospheric NO2 through the STRatospheric
Estimation Algorithm from Mainz13. Finally, air mass
factors (AMFs) are used to convert tropospheric SCDs to
tropospheric VCDs (TVCDs).

VCD ¼ SCD=AMF ð1Þ

For HCHO retrieval, the first step is the retrieval of the
differential slant column density (DSCD) by fitting
radiances through the basic optical differential spectro-
scopy (BOAS) method. DSCD represents the difference
between the true SCD value and SCD in the reference
spectra (the daily earth radiance in the remote Pacific
Ocean). Cross-sections of O3 at two temperatures, NO2,
O4, and bromine monoxide (BrO) were considered in the
retrieval of HCHO DSCDs14. Then, the DSCD is con-
verted to SCD through reference sector correction,
because earth radiance in the remote Pacific Ocean con-
tains a small amount of HCHO absorption14–16. Similar to
the conversion of NO2, the final step is the conversion of

HCHO SCD to HCHO VCD using AMF. As HCHO is
concentrated in the lower troposphere, the retrieved
HCHO VCD is approximately equal to the HCHO TVCD.
Further, because EMI shares the same overpass time as
TROPOMI, in the AMF calculation for NO2 and HCHO
retrieval, parameters including cloud information and
surface albedo are from TROPOMI. Simulated profiles of
NO2 and HCHO by the GEOS-Chem model are used as a
priori profiles in the AMF calculation.
SO2 TVCDs are retrieved using the optimal estimation

(OE) algorithm by minimizing the cost function. It
simultaneously considers the difference between the
simulated and measured reflectance and the difference
between the retrieved and the a priori state vectors. The
fitting is constrained by the measurement and a priori
uncertainty covariance matrix. The vector linearized dis-
crete ordinate radiative transfer model (VLIDORT) is
then employed to simulate the radiance containing only
Rayleigh scattering and O3 absorption. The Lambert-Beer
Laws introduce other trace gases effects with the a priori
profiles from the GEOS-Chem simulations. Cross-
sections of O3 at four temperatures, BrO and HCHO
were considered for SO2 retrieval

17.
However, because of the poor original spectral quality

of EMI (Fig. 1), the retrieval results are noisy and
show unrealistic distributions without pre-calibrations
(Fig. 2a–c). Therefore, we developed several new methods
to improve the traditional retrieval.
(1) The full width at half maximum (FWHM) of the

EMI instrumental spectral response functions
(ISRFs) changes much more drastically than that
of the TROPOMI ISRFs in spatial and temporal
dimensions (Fig. 1), because the EMI instrument
lacks preflight ISRFs and the instrument
performance is degraded by the complex space
environment. Simultaneously, the EMI wavelength
shifts are much larger (Fig. S1 in the Supplementary
Information). To address this problem, we
performed on-orbit wavelength calibration to
calculate daily ISRFs and wavelength shifts to
diminish the fitting residuals.

(2) The signal-to-noise ratio (SNR) of EMI is very low,
at only one-third of that of TROPOMI. Therefore,
there was a need to minimize the interference of
other trace gases in the retrieval fitting windows
and reduce the fitting residual under such a low
SNR of EMI. Here we set up an adaptive iterative
retrieval algorithm that selects the retrieval setting
best with minimum uncertainty among fitting
results using different retrieval settings. The
retrieval settings not only contain the fitting
windows but also consider low-order polynomials
and different trace gas parameters, etc. For
instance, instead of directly using wavelength
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fitting ranges suggested in the retrievals from OMI
and TROPOMI in previous studies, the wavelength
fitting ranges were chosen by the adaptive iterative
retrieval algorithm as 420–470 nm, 326.5–356 nm,
and 310.5–320 nm for NO2, HCHO, and SO2

retrievals from EMI, respectively.
(3) Owing to the insufficient mechanical structure of

optical path switching, EMI only provides the solar
spectrum once every 6 months. In addition, EMI
provides abnormal irradiance measurements owing
to a diffuser calibration issue. To obtain the
requisite daily solar spectrum for the following
retrieval algorithm, we used simulated irradiance
instead of using measured irradiance. This
eliminated the cross-track stripes in the retrieval
and reduced the average fitting residuals.

Further, retrieval results were improved by obtaining
algorithm updates (Fig. 2d–f). In particular, the spectra for
SO2 retrieval contain more noise because the strongest SO2

absorption band (300–330 nm) is close to the edge of the
measured spectra. Therefore, traditional retrieval settings
greatly overestimate the SO2 TVCDs in China and India11.
Improved SO2 data were obtained through the above three

measures, as well as extra measurement error correction
and pixel merging (Fig. 2e). The calibrated data from EMI
were validated by surface observations in India and TRO-
POMI data retrieved using our improved algorithm11. The
detailed retrieval algorithms for NO2, SO2, and HCHO from
EMI are described in our previous studies10,11,18.
According to the uncertainty propagation, the systematic

error of the NO2 TVCD is due to systematic uncertainty in
SCD retrieval (<3%), AMF calculation (15–40%), and stra-
tospheric separation (<10%). This caused a total systematic
error of NO2 TVCDs of ~18% in the summer and 42% in
the winter10,12. The systematic error of the HCHO VCD is
due to systematic uncertainty in SCD retrieval (~17%),
AMF calculation (15–51%), and reference sector correction
(10–40%)14,19. Combined, these produce a total uncertainty
of ~25% in clean regions and 67% in polluted regions.
Uncertainty from the AMF calculation contributes the most
to the systematic error of NO2 and HCHO TVCDs. The
parameters used in the EMI AMF calculation are similar to
the TROPOMI AMF calculation, and the systematic errors
in these two retrievals are of the same order of magnitude.
The SO2 concentration in the remote Pacific Ocean (10° S-
10° N, 135°−90° W) is assumed to be zero. Therefore, the
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retrieved SO2 TVCD in the remote Pacific region is iden-
tified as the systematic error of SO2 TVCD retrieval, which
is ~0.29 DU11.
Nevertheless, systematic retrieval errors will not affect the

comparison of TVCDs in the years 2019 and 2020. How-
ever, the random error can be used to evaluate whether the
satellite observation can capture the monthly variability of
the pollutants20. The random retrieval error of air pollutants
in the investigated city was calculated as error=

ffiffiffiffiffiffiffiffi

npix
p

, where
error is the average random retrieval error of all the satellite
pixels over the city and npix is the number of pixels over the
city20. Therefore, spatial sampling is the main factor influ-
encing random error. The monthly TVCDs of NO2 and
HCHO retrieved from EMI showed good consistency with
those from the operational products of TROPOMI (Fig. 3),
although the absolute values from the two instruments had
some deviation and the random retrieval errors of HCHO
from EMI were larger than those from TROPOMI. We did
not compare the SO2 results from the two satellite instru-
ments because of the systemic deviation of the operational
SO2 products from TROPOMI21.

Global air quality variations during COVID-19 pandemic
from EMI observation
Nitrogen oxides (NOx=NO+NO2) are short-lived trace

gas species produced by combustion emissions, such as coal
combustion for power generation and industrial produc-
tion, and from vehicle exhausts22,23. NO2 TVCD retrieved

from satellite observations has been widely used to indicate
anthropogenic emissions24,25. In March 2020, when the
COVID-19 pandemic had spread all over the world, the
global average NO2 TVCD from EMI observations was
1.3 × 1014 molecules cm−2 (20%) lower than that in March
2019. The reductions in NO2 TVCD were more evident in
regions with high concentrations, such as eastern China,
western Europe, and eastern North America (Fig. 4a). In
most investigated cities, the monthly NO2 TVCDs showed
good consistency with surface concentrations (Fig. S2).
However, in Tokyo, Berlin, and Paris, the surface con-
centrations showed relatively narrower variations. Similar
trends in the column and surface concentrations further
confirmed the decrease in NOx emissions. In particular,
when governments implemented active measures to pre-
vent the spread of the pandemic, NO2 TVCD accordingly
decreased abruptly4. Therefore, the changes in NO2 TVCD
can reflect the response to the pandemic in different cities;
this will be discussed in detail in the following section.
In addition to NO2, SO2 is also an important

anthropogenic pollutant from power generation, oil
refineries, smelters, and domestic heating26,27. In con-
trast to the significant reduction of NO2, SO2 TVCDs
in March 2020 showed a slightly increasing global
trend compared to that in March 2019 (Fig. 4b). With
the application of desulfurization techniques, SO2

emissions have greatly decreased worldwide in recent
years, and apart from in India, atmospheric SO2
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worldwide dropped dramatically28,29. Obvious SO2

emission hotspots were only observable in India
through satellite observation11. SO2 TVCDs from EMI
in most of the other regions were noisy. Therefore, we
specifically tracked the changes in SO2 in the
Chhattisgarh-Odisha region in India, where various
large coal-fired power plants are gathered and SO2

concentrations are among the highest in the world.
When the pandemic struck India in March 2020, the
observed SO2 TVCD was slightly higher than that in
March 2019 (Fig. S3), and the random retrieval errors
did not exceed the changes in the SO2 TVCDs. Fur-
thermore, because the concentration of air pollutants
can also be affected by meteorology, we adjusted the
SO2 TVCDs in 2019 to those under the meteorological
conditions of 2020 (deweathered SO2) according to
GEOS-Chem modeling (seeing method). The results
showed that the SO2 TVCD in March 2020 was much
higher than the deweathered TVCD in March 2019,
indicating that the power industry was unaffected by
the pandemic until then. Other studies had similar
findings. For instance, Zhang et al.30 found no obvious
reductions in SO2 TVCDs in India during the first
quarter of 2020 when compared to the first quarter of
years 2015–2019. Instead, great reductions in SO2

levels were noted in April and May, likely due to the
implementation of strict lockdown measures from late
March. In addition, Shi et al.31 found no substantial
change in SO2 in Chinese cities of Wuhan and Beijing
during the lockdown period, further indicating that the
main sources of SO2, such as residential heating and

energy production, were not as easily affected by the
pandemic as those of NO2

31.
HCHO in ambient air is formed by the atmospheric

chemical reaction of non-methane hydrocarbons
(NMHCs)32,33, as well as through direct emissions from
anthropogenic activities and biomass burning34–36.
HCHO TVCDs from satellite-based remote sensing has
been widely used to trace VOC emissions37–39. The global
average of HCHO TVCD in March 2020 was 1.5 × 1015

molecules cm−2 (21%) lower than that in March 2019.
However, distinct variations were observed in the differ-
ent regions (Fig. 4c). Similar variations in global NO2 and
HCHO between March 2019 and March 2020 were also
observed by TROPOMI (Fig. S4).

The change of NO2 from EMI observation indicates the
lockdown measures in different cities
The monthly increase in infections of COVID-19 in

China proliferated in January and reached a peak in
February 2020 (Fig. S5). The COVID-19 pandemic first
broke out in Wuhan, China, and the city has been under
an emergent lockdown measure since January 23, 2020.
Although the measure only covered nine days in January,
the monthly NO2 TVCD in Wuhan from EMI observa-
tion, which was calculated as the average of TVCDs in all
the satellite pixels within a radius of 50 km around the city
center, decreased by 56% relative to that in January 2019
(Fig. 5a). Even after deducting the influence of meteor-
ology, the NO2 TVCD in January 2020 decreased by 51%.
In addition, the random retrieval errors were less than 1%
of the monthly TVCDs, which were much lower than the
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change in NO2 TVCDs. Therefore, the sharp variation in
NO2 TVCD in January 2020 can be attributed to a sig-
nificant reduction in emissions. The annual one-week-
long Chinese New Year (CNY) holiday occurred in Jan-
uary of 2020 but in February of 2019. Therefore, the
decline in NO2 from January 2019 to January 2020
included the influence of the holiday effect. By directly
comparing NO2 TVCDs during the CNY week in both
years, we found a decrease of 1.2 × 1016 molecules cm−2

(77%) from 2019 to 2020. This could not be fully
explained by meteorological conditions, further proving

the role of lockdown on ambient NO2. Following Wuhan,
other cities in China, such as Beijing, Shanghai, and
Guangzhou, also established restrictive lockdown mea-
sures before January 26. The deweathered reduction
percent of NO2 in January for Guangzhou was compar-
able with that for Wuhan; however, the reductions for
Beijing and Shanghai were much lower (Fig. 5b–d). This
follows the conclusion put forth by Ding et al.40, who
suggested no significant reductions of NOx emissions in
Beijing in January 2020. A similar reduction trend for
NO2 TVCDs was also observed by TROPOMI (Fig. S6).
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Among the sources of NOx, lockdown measures first
affected transportation, followed by industry. However,
because basic living needs must be met, energy produc-
tion should not be drastically reduced. Indeed, residential
emissions may have increased because more people
remain at home31. According to the emission inventory
from the Community Emissions Data System (CEDS)41,
transportation contributed about 33% of the NOx emis-
sions in Wuhan. Alone, this does not cover the reduction
of NO2 in January, suggesting that most industries were
also shut down, causing the reduction of NOx in Wuhan
to reach an ultimate level without affecting basic living
needs. Contrastingly, the decline in NO2 did not exceed
the transportation contribution in Beijing, Shanghai, and
Guangzhou.
In February 2020, lockdown measures were con-

tinuously implemented in China. During this period, NO2

concentrations across the four cities in China further
decreased from those in January 2020; they were also
significantly lower than those in February 2019. The lar-
gest reduction in the NO2 TVCDs still occurred in
Wuhan. Because of the effective measures, the increase in
COVID-19 infections dropped sharply in March 2020,
and except for Wuhan, the lockdown was lifted in China.
Since then, productivity and living activities in Wuhan
have also gradually recovered. Therefore, NO2 con-
centrations in the four cities significantly increased from
February to March 2020. However, the concentrations in
the four cities remained approximately 30% lower than
those in March 2019.
In February 2020, the COVID-19 pandemic also spread

across Korea and Japan, and the spread in Korea was
noted to be faster than that in Japan. The Korean gov-
ernment placed restrictions to prevent the gathering of
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people and strengthen nucleic acid detection. The
restriction measures caused a decrease in NO2 TVCD by
26% in Seoul when compared with the deweathered
TVCD in February 2019 (Fig. 5e). In contrast, no lock-
down measures were taken by Japan in February, sug-
gesting a reason for the unaffected NO2 TVCD in Tokyo
(Fig. 5f). The pandemic in Korea and Japan was further
aggravated in March 2020. The NO2 TVCD in Seoul
further decreased to 35% lower than the deweathered
value in 2019, which is consistent with the decrease in
surface NO2 concentration in this city42. In addition,
owing to more stringent social distancing measures, the
NO2 TVCD in Tokyo also sharply decreased.
In Europe, the COVID-19 pandemic first broke out in

Italy in March 2020 and also reached its peak during that
month. On March 10, the Italian government imple-
mented strict measures to prevent gatherings. Corre-
sponding to this period in March 2020, the recorded NO2

TVCD in Milan was 34% lower than that in March 2019,
with meteorological corrections (Fig. 5g). EMI data was
not available from April 2020, because of the failure in the
solar battery of the Gaofen-5 satellite. Thus, after March
2020, we analyzed the changes in NO2 based on TRO-
POMI observations. The NO2 TVCD in Milan in April
showed a declining trend because of continued lockdown
(Fig. S6). In addition to column concentration, ground-
level NO2 in this city also decreased by ~30% during the
lockdown43. In the UK, Germany, and France, lockdown
measures were issued from the middle and late March.
The average NO2 TVCDs in Berlin and Paris in March
2020 significantly decreased compared with the
deweathered TVCDs in March 2019, but the reduction
percentage was much lower than that for Milan (Fig.
5h–i). However, because of the later implementation of
lockdown measures in the UK, the deweathered reduction
percent of NO2 TVCD in London in March was less than
10% (Fig. 5j). Surface observation in the UK also showed a
more gradual decline of NO2 early in the outbreak of
COVID-19 when compared to the sudden decline in the
other European countries6. Apart from Italy, the other
three European countries faced increasing detected
infections of COVID-19 in April. The NO2 TVCDs with
meteorological corrections in London and Paris during
this month decreased by 38% and 48%, respectively. This
indicated that restriction measures in both cities were
strictly implemented in April, although the pandemic had
broken and the lockdown measures had been established
in March. During this month, the reduction in Paris even
exceeded the contribution of transportation.
In the US, the pandemic broke out in March and then

rapidly spread until June; lockdown measures were taken
from late March. Correspondingly, NO2 TVCD decreased
by 40% compared with the deweathered TVCD in March
2019 (Fig. 5k), which was slightly higher than the

contribution of transportation. However, these measures
were not mandatory, and gradually loosened until they
were entirely relieved. As such, the NO2 TVCDs showed
no evident reduction after April (Fig. S6).
In India and Brazil, the COVID-19 pandemic struck in

March 2020 and broke out in April; lockdown measures
were implemented from late March. In March 2020, NO2

TVCD decreased by 32% and 19% in New Delhi and Rio
de Janeiro, respectively, when compared with the
deweathered TVCDs in March 2019 (Fig. 4l–m). How-
ever, to recover the economy, the lockdown measures
were gradually released from late May despite the more
severe pandemic. Therefore, the NO2 TVCDs in both
cities in June recovered to comparable levels in the cor-
responding month of 2019 (Fig. S6).

HCHO change indicates the relative importance of
anthropogenic and natural sources of VOCs
The COVID-19 pandemic has been suggested to abate

anthropogenic emissions of VOCs but not biogenic emis-
sions. Therefore, changes in HCHO can indicate whether
the VOCs in a city mainly originate from anthropogenic or
biogenic sources. Monthly HCHO TVCDs from EMI
observations in Wuhan from January to March 2020 were
significantly lower than those in the corresponding months
of 2019, with the maximum reduction seen in February
(Figs. 6 and S7). Though Wuhan was very often covered by
clouds in February 2019, which led to less spatial sampling
and larger random error of HCHO TVCD than that in
February 2020, the errors did not exceed the variations in
HCHO TVCDs. A similar phenomenon was observed in
Guangzhou and Shanghai. This suggests that anthropogenic
emissions are a major source of VOCs and were sub-
stantially affected in these three cities. Lower HCHO yields
from NMHC with NOx emission plunges may also reduce
HCHO TVCDs9. However, the HCHO TVCDs in Beijing in
January and March 2020 were even higher than those
during the corresponding periods of 2019, and the decrease
in HCHO TVCDs in February was close to the random
retrieval errors. This may be explainable as enterprises with
high VOC emissions (e.g., chemical plants) were moved to
Hebei Province in 2014 to improve air quality in Beijing. As
such, it can be assumed that most VOCs in Beijing origi-
nates from biogenic emissions, which were not disturbed by
the pandemic.
HCHO in the cities of the other investigated countries

also showed different trends. In Milan, Berlin, and Lon-
don, HCHO only presented a significant decrease in the
first one or two months after the pandemic broke out but
remained at comparable levels following this, with the
random retrieval errors being considered (Figs. 6 and S7).
One reason for this phenomenon is that the contribution
of VOCs from biogenic sources is likely to have increased
with an increase in temperature from winter to spring.
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HCHO in Tokyo and Rio de Janeiro decreased synchro-
nously with NO2 at the beginning of lockdown, but the
reduction percentage was lower than that of NO2 in the
following months. In Seoul, the reduction in HCHO levels
was comparable to that in NO2 levels; however, in New
Delhi, no evident reduction in HCHO levels was observed.
It should be considered, however, that various complex
sources can cause distinct variations in HCHO levels. For
instance, Sun et al.9 reported that the HCHO trends in
Australia, northeastern Myanmar of Southeast Asia,
Central Africa, and Central America were dominated by
fire activities during the pandemic.

Discussion
The attenuation of anthropogenic activities during the

pandemic caused a decline in both gross domestic pro-
duct (GDP) and air pollutant emissions. Here, we use the
ratio of quarterly averaged NO2 TVCD to the quarterly

GDP in a country (NO2/GDP) to indirectly reflect NO2

emissions per unit GDP. As NOx emissions are mainly
from the secondary industry, such as manufacturing and
mining, the convergence between the variations of GDP
and NO2 TVCDs can reveal whether the decline in GDP
was mainly from the secondary industry, or the primary
and tertiary industries, such as agriculture and service
trade. To compare the changes in NO2/GDP in different
countries, we calculated the relative variation of NO2 to
GDP (△(NO2/GDP)) as follows:

Δ NO2=GDPð Þ ¼ ðNO2 TVCD2020=GDP2020

�NO2 TVCDdeweathered 2019=GDP2019Þ
= NO2 TVCDdeweathered 2019=GDP2019ð Þ

ð2Þ
Here, NO2 TVCD2020 is the quarterly averaged NO2 TVCD
in 2020, and NO2 TVCDdeweathered 2019 is the deweathered
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quarterly NO2 TVCD in 2019. GDP2019 and GDP2020 are
quarterly data for 2019 and 2020, respectively.
In the first quarter of 2020, the GDP in eight of the ten

investigated countries, except for India and Japan, sig-
nificantly decreased. Quarterly NO2 TVCDs decreased in
the three developing countries, China, India, and Brazil,
but increased in the other seven countries despite a sub-
stantial reduction in March. In China, △(NO2/GDP) was
below 0, indicating that the reduction percent of NO2

TVCD was more than GDP, therefore suggesting that the
secondary industry was more affected by the pandemic
(Fig. 7). The higher NO2/GDP values in the remaining
seven countries suggested that the decline in GDP was
caused primarily due to impacts on the primary and ter-
tiary industries. As such, this study proves that Chinese
satellite instruments can play an important role in the
global monitoring of atmospheric environmental events.

Materials and methods
TROPOMI data
TVCDs of NO2 and HCHO from TROPOMI were also

used in this study. TROPOMI onboard the Sentinel-5
Precursor (S-5P) was launched in October 2017. It mea-
sures ultraviolet and visible backscattered radiances from
266 to 775 nm, with a spectral resolution of 0.5 nm. The
nadir spatial resolution of TROPOMI was 7 × 3.5 km2

which was then, improved to 3.5 × 5.5 km2 after August
201944. The data from TROPOMI was directly accessed
via the Sentinel-5P Pre-Operations Data Hub website.

Correction of meteorological influence using GEOS-Chem
Modeling
The GEOS-Chem model, a global 3-D chemical trans-

port model (CTM), was used to deduce the influence
of meteorology on air pollutant concentrations by

simulating the change in air pollutants from 2019 to 2020.
This model is driven by the Goddard Earth Observing
System (GEOS) assimilated meteorological fields from the
NASA Global Modeling and Assimilation Office45. The
model includes a detailed mechanism of the universal
tropospheric-stratospheric chemistry extension (UCX)
mechanism46. Further, global anthropogenic and biofuel
emissions from the CEDS inventory41 were used and
processed through the Harvard-NASA emission compo-
nent (HEMCO)47. NO2, SO2, and HCHO in 2019 and
2020 were simulated using the same inventory and their
respective meteorological fields in different years. The
observed TVCDs of these pollutants in 2019 were adjus-
ted to those under the meteorological conditions in 2020
(TVCDdeweathered 2019) as follows:

TVCDdeweathered 2019 ¼ TVCDobs 2019

´ TVCDmodeling 2020=TVCDmodeling 2019

ð3Þ

Here, TVCDobs 2019 is the observed TVCDs from
satellite instruments in 2019, and TVCDmodeling 2019

and TVCDmodeling 2020 are the simulated TVCDs from
GEOS-Chem for the years of 2019 and 2020, respectively.
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