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“When you can measure what you are speaking about and
express it in numbers, you know something about it.”

Lord Kelvin

There is considerable interest in and enthusiasm for quantita-
tive tests for residual cancer cells in the context of cancer therapy,
a concept referred to as measurable residual disease (MRD)-
testing. However, an updated critical evaluation of using MRD-
tests to predict cancer recurrence and to direct subsequent cancer
therapy(ies) is needed. We review concepts underlying MRD-
testing and results of studies of MRD-testing in haematological
and solid cancers. Most important, we examine if there are any
convincing data proving therapy decisions in someone with
cancer should be guided by results of MRD-testing or a positive
MRD-test result provides sufficient and meaningful lead time to
intervene and substantially change clinical outcomes.

MEASURABLE RESIDUAL DISEASE (MRD)
In the context of cancer, MRD-testing attempts to quantify residual
cancer cells when the cancer is no longer detectable by
conventional methods including blood tests, biopsy or radiologi-
cal studies such as 18F-deoxyglucose positron emission tomogra-
phy (PET), computed tomography (CT) and/or magnetic resonance
imaging (MRI). The concept of MRD-testing is not new. Since the
1950s blood concentration of beta-human chorionic gonadotropin
(β-hCG) has been used to monitor response to chemotherapy of
trophoblastic cancers [1]. Other examples include use of blood
concentrations of prostate specific antigen (PSA) in prostate
cancer, carcinoembryonic antigen (CEA) in colorectal and lung
cancers and cancer antigen 125 (CA-125) in ovary cancer.
The best examples of the utility of MRD-testing are in chronic

myeloid leukaemia (CML), acute promyelocytic leukaemia (APL)
and acute lymphoblastic leukaemia (ALL) because these diseases
have well-defined molecular signatures [2–4]. However, these
cancers are atypical. CML and APL are caused by a single canonical
mutation shared by all affected persons: the breakpoint cluster
region–Abelson tyrosine protein kinase-1 (BCR::ABL1) and the
promyelocytic leukaemia protein–retinoic acid receptor alpha
(PML::RARA) fusion genes, respectively. On the other hand, each
case of ALL has a unique immunoglobulin (IG) or T-cell receptor

(TCR) rearrangement which can serve as a clonal marker. Other
cancers might not be as well-defined in DNA or RNA. Quantitative
definition for the depth of molecular response is the most
standardised in CML [5, 6]. Persons with CML who attain deep
molecular response (DMR) may decide to stop taking tyrosine
kinase inhibitors (TKIs) [6–11]. For these people, conversion from
negative to positive MRD-test results i.e. loss of major molecular
response [MMR]) is often a trigger for re-starting TKI-therapy
[6–9, 12].
Most studies of MRD are in haematological cancers but there

are increasing numbers in solid cancers. Although MRD-tests in
haematological cancers and in solid cancers seem similar, there
are important fundamental differences. In haematological cancers
MRD-testing is usually done in persons achieving a complete
remission/response after receiving or completing systemic ther-
apy. In contrast, in solid cancers MRD-testing is sometimes done
immediately after surgical resection of a (presumably) localised
cancer.
MRD-tests in blood cancers include multi-parameter flow cytome-

try (MPFC), real-time quantitative reverse transcription PCR (RT-qPCR)
or digital PCR (dPCR) of RNA molecules, real-time quantitative PCR
(qPCR) or dPCR of DNA molecules and next-generation sequencing
(NGS) [13–18]. MRD-testing in solid cancers mostly focuses on
identifying cancer cells or DNA from them in blood via targeted
detection of cancer-related mutation(s) [19]. There are important
differences among various types of assays. MPFC enumerates
(mostly) live cells one-by-one [20, 21]. In contrast, NGS detects cell-
free DNA (released by normal or cancer cells that undergo apoptosis
or necrosis) or DNA extracted from live cells [22, 23]. RT-qPCR assays
often implicitly assume all cancer cells have equal transcription rates.

ACCURACY OF MRD-TESTING TO PREDICT RELAPSE/
RECURRENCE
There is often a correlation between a positive MRD-test result and
cumulative incidence of cancer relapse/recurrence (CIR). However,
previously-reported numbers were not stellar [24]. For example, in
CML a positive MRD-test predicted a 42–74 percent cumulative
incidence of cytogenetic or haematological relapse whereas the
positive predictive value (PPV) was reported to be <60 percent in
ALL and AML [25–29]. The question is how much the field has
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advanced and currently at what rates of positive and negative
predictive values (PPV; NPV) of cancer recurrence?
To address this, we interrogated data from 1510 publications on

MRD during 1 January 2013–7 October 2023 in 17 high impact
factor medical journals using the Boolean search terms ‘cell free
DNA’, ‘cell-free DNA’, ‘cfDNA’, ‘circulating tumour DNA’, ‘ctDNA’,
‘measurable residual disease’, ‘minimal residual disease’, ‘MRD’
and ‘residual disease’ (Supplementary Fig. 1). ‘Circulating tumour
cells’ (CTC) was not a search term but some CTC studies were
identified by other search terms. Cell-free DNA (cfDNA) is the most
commonly studied analyte in liquid biopsies and more commonly
used in solid cancers compared with CTC [30]. 25 of the 1510
publications mentioned CTC. We identified 95 articles including 15
from LEUKEMIA which studied > 50 subjects and had data on
relationship between MRD-test results and cumulative incidence
of histological relapse or clinical or radiological progression
[31–125]. 82 were studies in haematological cancers and 13 in
solid cancers. CML studies that defined relapse as loss of MMR (i.e.
molecular relapse) were not included [126–128]. If definition of
relapse is a previously negative MRD-test becoming positive or a
previously weakly-positive MRD-test becoming stronger, naturally
there is an absolute correlation between MRD-test results and
relapse, a self-fulfilling prophesy.
For 79 articles we were able to calculate the odds ratio (OR) of

CIR between subjects with positive and negative MRD-tests
receiving the same therapy (Table 1; Supplementary Table 1)
[31–35, 38–44, 46–49, 53–69, 71–74, 76–79, 82–91, 95–99,
101–110, 113–125]. Median study cohort size was 147 subjects
(inter-quartile range [IQR], 86–224) for haematological cancers and
77 (IQR, 59–112) for solid cancers. AML (N= 38) and ALL (N= 23)
were the most commonly studied haematological cancers and
colorectal (N= 5) and breast (N= 4) cancers, the most commonly
studied solid cancers. In studies of haematological cancers the
most commonly studied MRD-test time points were during/after
remission induction (N= 33) and pretransplant (N= 24). In studies
of solid cancers the most common MRD-test time point was
immediately post-resection (N= 8). In haematological cancers the
most commonly studied MRD-test assays were MPFC (N= 31) and
PCR (N= 24) whilst in solid cancers NGS (N= 10) was the most
common MRD-assay.
Not all studies reported estimated standard errors of CIR, PPV or

NPV. However, the standard error of the logarithm of OR for
likelihood of relapse/recurrence in subjects with a positive MRD-
test compared with those with a negative MRD test should be
approximately proportional to 1=

ffiffiffiffi

N
p

, where N is the cohort size
[129]. Based on this assumption we used Egger regression to
correct for variation in cohort size across the studies and detect
plausible publication bias [130]. We detected no publication bias
(Supplementary Fig. 2). After correcting for variation in cohort size
the estimated average OR for likelihood of relapse/recurrence in
subjects with positive MRD compared with those with negative
MRD was OR= 3.5 (95% confidence interval [CI], [2.3, 5.4]) in
haematological and 9.1 ([3.3, 24.9]) in solid cancers (Table 2). The
greater accuracy of MRD-testing of blood samples in predicting
relapse/recurrence in solid cancers is possibly because detection
in blood samples implies these persons may already have
metastases.
In our analysis we compared highly diverse MRD-test targets

(specific cancer markers like BCR::ABL1, clonal markers such as
IG/TCR rearrangements, aberrant cell phenotypes, circulating
tumour DNA [ctDNA] etc.), assay types (MPFC, PCR, NGS etc.) and
cancers, raising the question whether it is legitimate to consider
these together. Consequently, we also did sub-group analyses of
haematological cancers focusing on different publication peri-
ods, types of leukaemia, MRD-testing time points and MRD-test
assays (Table 2). MRD-tests in AML had higher ORs compared
with ALL (4.7 [2.6, 8.6] versus 2.5 [1.3, 4.5]). MRD-tests done
during/after consolidation chemotherapy had higher ORs

Table 1. Articles that studied the association of MRD-test results with
relapse risk in persons receiving identical therapy.

Sub-group Articles, N (%)

Publication year

Haematological cancers 66 (84)

Before 31 Dec 2018 33 (42)

After 1 Jan 2019 33 (42)

Solid cancers 13 (16)

After 1 Jan 2019 13 (16)

Disease

Haematological cancers 66 (84)

ALL 23 (29)

AML 38 (48)

Lymphoma 2 (3)

MM 1 (1)

>1 cancer types 2 (3)

Solid cancers 13 (16)

Patient age

Haematological cancers 66 (84)

Adults 39 (49)

Children 11 (14)

Adults + Children 15 (19)

NA 1 (1)

Solid cancers 13 (16)

Adults 13 (16)

MRD-test time

Haematological cancers 66 (84)

During or after induction 33 (42)

During or after consolidation 9 (11)

Before transplant 24 (30)

After transplant 9 (11)

End of treatment 2 (3)

Solid cancers 13 (16)

Before surgery 3 (4)

After surgery 8 (10)

After adjuvant chemotherapy 2 (3)

End of treatment 2 (3)

MRD-test assay

Haematological cancers 66 (84)

MPFC 31 (39)

PCR 24 (30)

NGS 8 (10)

>1 assay types 6 (8)

NA 1 (1)

Solid cancers 13 (16)

PCR 3 (4)

NGS 10 (13)

CTC 1 (1)

>1 assay types 1 (1)

ALL acute lymphoblastic leukaemia, AML acute myeloid leukaemia, CTC
circulating tumour cell enumeration, MM multiple myeloma, MPFC multi-
parameter flow cytometry, MRD measurable residual disease, NA not
applicable, NGS next-generation sequencing, PCR polymerase chain
reaction.
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compared with MRD-tests during/after remission induction (12.8
[5.8, 28.6] versus 1.6 [1.0, 2.6]). Finally, MRD-tests done
posttransplant had higher ORs compared with tests done
pretransplant (21.0 [6.8, 65.3] versus 6.3 [3.7, 10.6]). When done
at selective time points (i.e. during/after consolidation che-
motherapy or after transplant), accuracy of MRD-tests for
predicting CIR in haematological cancers exceeds accuracy in
solid cancers. However, the later we do MRD-testing the less
likely it is a subsequent intervention will change outcomes. For
example, a positive MRD-test result posttransplant by itself is
unlikely to change subsequent therapy. There is also the issue of
the interval between a positive MRD-test and clinical relapse as
the lead time might not be meaningful.
Despite the high ORs of positive MRD-test results for predicting

CIR, PPVs were highly variable (Table 3). MRD-tests are useful for
identifying sub-cohorts with different CIRs (i.e. risk-stratification).
However, MRD-testing is less accurate if we want to identify which
persons in a cohort will relapse or not. Median PPV was only 55
percent in haematological (IQR, 40–70%) and 75 percent in solid
cancers (IQR, 56–77%). Median NPV was 77 percent in haemato-
logical (IQR, 69–86%) and 88 percent in solid cancers (IQR,
83–92%). For haematological cancers, PPVs ranged from 41
percent in children or ALL to 73 percent for tests done
posttransplant whereas NPVs ranged from 71 percent for tests
done during/after consolidation chemotherapy to 83 percent for
tests done posttransplant. Even in the best-case scenario (i.e.
MRD-tests done posttransplant) median PPVs and NPVs were
unsatisfactory. However, our analyses share weaknesses with
other similar analyses [131, 132].

SOURCES OF ERRORS
Accuracy of MRD-testing in predicting outcomes varies and
correlates with cancer type, assay type, how representative a
sample used for MRD-testing is of residual cancer cells and other
parameters [19]. Considering the extensive data from MRD-testing
in haematological cancers it is important to review lessons learned
and implications.
MRD-test results are quantitative, but a clinical decision is

usually made based on applying one or more pre-defined
thresholds to the MRD-test results. Therefore, MRD-test results
are often used as binary (negative/positive) or ternary (negative/
weak/strong). However, a fixed set of cut-off threshold values fail
to reflect different kinetics of wide-ranging leukaemia sub-types.
For example, an MRD concentration of 0.01 percent in childhood
ALL with high-risk genetics (e.g. lysine methyltransferase 2A (MLL)
fusions) has the same relapse risk as an MRD concentration of 1
percent in children with hyper-diploidy [133]. Consequently, cut-
off thresholds for MRD-test results should reflect biological
features of the cancer being considered, but this is rarely so in
practice. Also, sensitivity and specificity of MRD-tests are evolving
over time and variable across assays.
In childhood ALL it is common to use sequential MRD-testing to

estimate relapse risk and adjust therapy-intensity accordingly [75, 94].

Table 2. Sub-group analysis of the odds ratio of relapse risk between
subjects with positive and negative MRD-tests.

Sub-group Odds ratio (95-percent
CI)a

Haematological cancers

All (N= 66) 3.5 (2.3–5.4)

Publication year

Before 31 Dec 2018 (N= 33) 2.3 (1.0–5.4)

After 1 Jan 2019 (N= 33) 4.5 (2.4–8.3)

Cancer type

ALL (N= 23) 2.5 (1.3–4.5)

AML (N= 38) 4.7 (2.6–8.6)

Patient age

Adults (N= 39) 4.4 (2.5–7.6)

Children (N= 11) 1.7 (0.3–9.8)

MRD-test time

During or after induction (N= 33) 1.6 (1.0–2.6)

During or after consolidation
(N= 9)

12.8 (5.8–28.6)

Before transplant (N= 24) 6.3 (3.7–10.6)

After transplant (N= 9) 21.0 (6.8–65.3)

MRD-test assay

MPFC (N= 31) 4.4 (2.4–8.1)

PCR (N= 24) 2.2 (0.5–9.4)

NGS (N= 8) 4.9 (1.1–22.1)

Solid cancers (N= 13) 9.1 (3.3–24.9)

ALL acute lymphoblastic leukaemia, AML acute myeloid leukaemia, CI
confidence interval, MPFC multi-parameter flow cytometry, MRD measur-
able residual disease, NGS next-generation sequencing, PCR polymerase
chain reaction.
aEstimated by Egger regression.

Table 3. Sub-group analysis of positive and negative predictive values
of a positive MRD-test.

Sub-group Positive
predictive value
%, median (IQR)

Negative
predictive value
%, median (IQR)

Haematological cancers

All (N= 66) 55 (40–70) 77 (69–86)

Publication year

Before 31 Dec
2018 (N= 33)

61 (46–78) 75 (69–82)

After 1 Jan 2019
(N= 33)

50 (35–62) 79 (72–93)

Cancer type

ALL (N= 23) 41 (27–60) 82 (75–93)

AML (N= 38) 65 (50–75) 75 (64–82)

Patient age

Adults (N= 39) 62 (48–72) 74 (66–79)

Children (N= 11) 41 (35–60) 82 (75–92)

MRD-test time

During or after
induction (N= 33)

55 (36–75) 74 (65–87)

During or after
consolidation
(N= 9)

61 (52–67) 71 (65–77)

Before transplant
(N= 24)

53 (38–65) 79 (75–82)

After transplant
(N= 9)

73 (46–86) 83 (76–89)

MRD-test assay

MPFC (N= 31) 58 (41–74) 75 (63–88)

PCR (N= 24) 55 (40–71) 77 (72–86)

NGS (N= 8) 66 (53–68) 76 (73–83)

Solid cancers (N= 13) 75 (56–77) 88 (83–92)

ALL acute lymphoblastic leukaemia, AML acute myeloid leukaemia, IQR
inter-quartile range, MPFC multi-parameter flow cytometry, MRD measur-
able residual disease, NGS next-generation sequencing, PCR polymerase
chain reaction.
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This dynamic, adaptive approach is not standardised in most other
cancers save CML where dose and/or type of TKI therapy is adjusted
based on results of sequential MRD-testing for BCR::ABL1. Diverse
leukaemia types have different proliferation rates, sensitivities to
chemotherapy and/or biological features including the likelihood of
causing relapse which need to be accounted for. For example, it is
reportedly necessary to do MRD-testing every 2 months in AML with
the PML::RARA fusion gene to reliably detect MRD with 90-percent
confidence and >2-month lead time before histological relapse [134].
In contrast, some data suggest monthly MRD-testing may be
necessary in AML with the core-binding factor subunit beta–myosin
heavy chain 11 (CBFB::MYH11) fusion gene to achieve this goal [90].
Another important limitation of MRD-testing is that not all

leukaemia cells detected have the biological ability to cause
relapse [135, 136]. Presently, there is no reliable way to distinguish
cells with and without this ability. Competing causes of death in
persons with leukaemia further complicate evaluating accuracy of
MRD-testing. For example, someone with a positive MRD-test may
die from an unrelated cause before relapse resulting in a
seemingly false-positive test result when the outcome measure
is leukaemia-free survival or survival rather than CIR [137]. Other
endpoints such as time-to-next-therapy (TTNT) are also inap-
propriate because of subjectivity in deciding whom to treat
and when.
One important cause of false-negative MRD-tests is that a

sample may not be representative of the number of cancer cells in
someone. This limitation is perhaps as or more important
compared with sensitivity and specificity of the MRD-assay. Blood
and bone marrow are easily sampled but it is often incorrectly
assumed the distribution of cancer cells in these samples is
representative of the distribution of cancer cells throughout the
body. Bone marrow is often the default sample for MRD-testing in
haematological cancers although a blood sample is a similarly or
even more accurate relapse predictor in some settings
[53, 54, 69, 138, 139]. Obviously, a sample containing no cancer
cell cannot be informative regardless of assay sensitivity when the
assay is based on analysing intact cells or RNA or DNA extracted
from intact cells. In chronic lymphocytic leukaemia (CLL), for
example, residual leukaemia cells in spleen and lymph nodes are
unlikely to be identified in MRD-tests done on blood or bone
marrow samples, a limitation that may be overcome by testing for
cfDNA [140]. The same limitation applies to plasma cell myeloma
where bone marrow involvement is often spatially heterogeneous.
This limitation also applies to multi-site involvement in lympho-
mas. These situations parallel the concept of testing blood
samples in persons with solid cancers where there may be
undetectable metastases at distant sites. For example, breast
cancer brain metastases are less likely to be detected by an MRD-
test of a blood sample [113]. Even without spatial heterogeneity
there is Poisson noise. The number of leukaemia cells in a 5 ml
sample from a 5 L blood volume fluctuates as a result of Poisson
noise alone and taking this into account improves interpretation
of MRD tests [141, 142]. With the proviso you have a sensitive and
specific assay, cell-free detection of ctDNA in solid cancers might
be less susceptible to Poisson noise than other MRD-testing assays
that rely on presence of intact cancer cells in a sample (e.g.
detection of BCR::ABL1 transcripts in leukaemia cells). When the
unit of detection is numbers of molecules rather than cells Poisson
noise is less of a concern if molecule concentrations are orders of
magnitude larger than cell concentrations.
Another cause of false-negative MRD-tests is the considerable

phenotype and genotype heterogeneity of cancer cells [143, 144].
For example, in CML some leukaemia cells carry a newly-mutated,
resistant BCR::ABL1 fusion gene but mutated transcripts are
undetectable by NGS [145]. Consequently, testing for mutated
BCR::ABL1 transcripts may not identify all resistant leukaemia cells.
Moreover, residual leukaemia cells can be in different immune-
phenotype-defined sub-populations with considerable variation

among people [146, 147]. In many cancers new sub-clones may
emerge spontaneously or in response to therapy. This makes
MRD-testing an exercise of chasing a moving target [148, 149].
The technology used for MRD-testing should also be considered

when interpreting results. ctDNA is derived from cancer cells
which have died from apoptosis or necrosis spontaneously or as a
result of therapy [22, 23, 150]. Consequently, quantification of
ctDNA might not reflect numbers of residual, live cancer cells. Nor
can it distinguish therapy-sensitive and -resistant cells. Guidelines
for MPFC-based MRD-testing often recommend declaring a test
positive only if ≥5 × 10E+5 cells are analysed and if ≥20 or ≥50
cells are positive [14, 78, 151]. Adopting these guidelines
decreases false-positives but increases false-negatives [141, 152].
Using fusion gene transcript concentration as a proxy for numbers
of residual cancer cells implicitly assumes all cancer cells have
equal transcription rates. However, a recent study in CML reported
discordance between sizes of resistant sub-clones of leukaemia
cells estimated by quantifying DNA versus RNA transcripts in
many persons [145]. Presently, it is unclear if any technology is
better than others for MRD-testing. With ‘next-generation flow
cytometry’, MPFC is able to achieve a sensitivity of 2 × 10E–6 and
is reportedly more accurate compared with NGS-based MRD-
testing for predicting posttransplant PFS and survival in plasma
cell myeloma [153].
In summary, data from studies in haematological cancers

indicate MRD-testing is useful for predicting relapse risk but use
of MRD-test results is complex and with substantial limitations
resulting in high false-positive and -negative rates. Some of these
limitations are potentially surmountable (e.g. adjusting the
frequency of MRD-testing) whereas others, such as Poisson noise,
are more difficult to overcome.

SHOULD WE USE RESULTS OF MRD-TESTING TO GUIDE
SUBSEQUENT THERAPY?
Given MRD-tests’ inherent limitations we interrogated data to
determine how useful are results of MRD-testing to guiding
subsequent therapy(ies) such as intensifying therapy (e.g. a
haematopoietic cell transplant) or withholding therapy (e.g.
adjuvant chemotherapy in resected colorectal cancer).
Only 18 of the 95 articles in our literature survey had data on

the effect of MRD-guided therapy on relapse risk. All were limited
to acute leukaemias (Table 4). Five concluded it is possible to
withhold therapy in MRD-test-negative subjects without increas-
ing relapse risk whereas 1 concluded otherwise. In contrast, 7
concluded it is possible to reduce relapse risk by intensifying
therapy in MRD-test-positive subjects whereas 6 concluded it
is not.
Ideally, studies testing the efficacy of MRD-testing should be

RCTs. An optimal RCT for this purpose would be a 2 × 2 design and
treat the entire cohort of subjects on the same protocol until an
MRD-test is done and then randomise the subjects into two
control arms (i.e. conventional therapy[ies] for positive- and
negative-MRD subjects) and two experimental arms (i.e. experi-
mental therapy[ies] for positive- and negative-MRD subjects)
(Fig. 1). This was rarely done. Only 7 articles in our literature survey
were bona fide RCTs, all limited to ALL in children and/or young
adults. In children with ALL, early response to remission induction
therapy including results of MRD-testing is often used to classify
children into different ‘risk’ strata and then channel them into
different therapy-intensity paths. Once this is done the results of
post-remission induction MRD-testing are usually no longer used
to guide therapy. This paradigm of ‘early response-guided therapy’
or ‘MRD-guided therapy’ was not originally developed based on
data from RCTs but is associated with recent survival improve-
ments [154–159]. In 7 studies in our survey RCTs tested the
possibility of decreasing therapy-intensity further in low-risk
children or increasing therapy-intensity further in high-risk
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children [37, 45, 70, 92, 94, 100, 112]. Five articles described RCTs
of whether decreasing therapy-intensity in MRD-test-negative
subjects increased CIR; 4 concluded no. Three articles described
RCTs of whether increasing therapy-intensity in MRD-test-positive
children decreased CIR; only 1 concluded yes. Ongoing RCTs on
MRD-guided interventions in solid cancers are reviewed else-
where; results are pending [160].
In summary, it is unclear if we can reduce relapse/recurrence

risk through positive-MRD-guided intervention or withhold
therapy based on negative MRD-test results in most cancers.
There is reasonably strong support for decreasing therapy-
intensity in MRD-test-negative children and/or young adults
with ALL whilst data are lacking for other cancers such as AML
and CLL. In contrast, intensifying treatment in a person with a
positive MRD-test might temporarily drive MRD-test results to
negative but often this is not correlated with a lower CIR or
better survival. For example, some haematologists argue people
with AML and a positive MRD-test should receive a haemato-
poietic cell transplant whereas others argue the contrary
because transplant outcomes in these people are poor [104,
161]. Efficacy can only be proven in an RCT but such trials are
infrequently done.

Conjoint analysis of RCTs of MRD-guided therapies will also help
us decide if MRD state can be used as a surrogate for CIR in future
clinical trials. MRD-test results positively correlate with CIR at the
sub-cohort level (albeit imperfectly) as we discuss above.
However, this correlation alone is insufficient. If MRD state is
indeed a perfect surrogate for CIR a positive MRD-test should imply
the same CIR regardless of the treatment protocol used prior to
the MRD-test (Fig. 2; Supplementary Methods). The true endpoint
rate at any follow-up time (i.e. CIR) should be independent of prior
therapy given the values of the surrogate variable (i.e. MRD-test
results) [162]. Otherwise, it would be premature to declare a
negative MRD-test a success and a positive MRD-test a failure,
because positive MRD has different meanings in persons with the
same disease treated on different protocols and in some (but not
all) protocols CIR may still be modifiable by adjusting subsequent
therapy. Presently, MRD state has not satisfied the stringent
operational criteria for a surrogate endpoint.

CONCLUSION
Categorising MRD-test results into binary or ternary is an efficient
way to facilitate rapid decision-making. However, this di- or

Common protocol MRD-test

Positive MRD

Negative MRD

Conventional treatment for 
positive-MRD cases

Intensified treatment

Conventional treatment for 
negative-MRD cases

Reduced-intensity treatment

Randomization

Randomization

Fig. 1 Optimal design of a randomised controlled trial that tests the efficacy of MRD-guided therapy.

Protocol A MRD-test

Protocol B MRD-test

Positive MRD

Negative MRD

Positive MRD

Negative MRD

Identical CIR

Identical CIR

Identical CIR

Identical CIR

Protocol C

Protocol D

Protocol E

Protocol F

Protocol C

Protocol D

Protocol E

Protocol F

Fig. 2 Conditions that need to be met for MRD state to be a perfect surrogate for relapse risk when running clinical trials to compare
efficacy of protocols. To be able to use MRD state as a surrogate for cumulative incidence of relapse (CIR) when comparing protocols in
clinical trials, it is crucial that MRD-test results have the same implications for CIR and follow-up interventions (or lack thereof ) regardless of
which protocol (A versus B) is used prior to the MRD-test. More explanations are available in Supplementary Methods.
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trichotomization might delude us into believing there is a solid
foundation underlying our decisions for MRD-guided interven-
tions in most cancers. This is not so.
Our analyses suggest there has been too little focus on

therapeutic implications of MRD-test results. Only RCTs can
definitively prove whether an intensified intervention in people
who are MRD-test-positive improves outcomes compared with
conventional management. Similarly, only RCTs can prove
whether withholding an intervention in a person who is MRD-
test-negative is without risk.
Finally, it is important to recognise that a positive MRD-test after

a therapy intervention might identify people with biologically more
aggressive cancers compared with those with a negative MRD-test
and that cancer cells detected by the MRD-test might not be the
cause of the increased CIR but be merely assocated with it.
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