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A complex interplay of intra- and extracellular factors regulates
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Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a
functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-
expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to
myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We
characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that
whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and
metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases
signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of
pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors
highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and
adult-origin leukemia, with implications for human MLLr leukemia cells’ ability to communicate with their environment through
granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-
initiated and adult-onset MLLr leukemia.

Leukemia; https://doi.org/10.1038/s41375-024-02235-5

INTRODUCTION
Acute leukemias with rearrangements of the Mixed lineage
leukemia 1 (MLL1/KMT2A) gene represent an aggressive class of
the disease with a poor prognosis and response to treatment in
infants as well as in adults [1–4]. Infant MLL1/KMT2A-rearranged
(henceforth MLLr) leukemias are thought to be frequently, if not
always, initiated already in utero [5, 6]. Critically, a marked
discrepancy exists in the incidence rate as well as occurrence of
different disease phenotypes between infants and adults; MLLr
leukemia predominately manifests as acute lymphoblastic leuke-
mia (ALL) in infants, while acute myeloid leukemia (AML) presents
at similar frequency as ALL in MLLr leukemia in adults [7].
Although the reasons behind this discrepancy remain elusive, the
fact that fetal and adult hematopoiesis differ greatly on both a
functional and a molecular level [8–14] together with the studies
that have highlighted that the developmental age and lineage
potential of the leukemia-initiating cell (LIC) plays a crucial role in
both the type and the aggressiveness of the subsequent disease

are of high relevance [15–17]. Importantly, in MLLr leukemia, also
the developmental stage of the niche in which the disease is
propagated has been implicated as an important factor in
regulating both the aggressiveness and phenotype of the
leukemia [18–21].
In this work, we have performed a comprehensive proteomic

and functional characterization of MLLr leukemic transformation
in fetal- and adult-origin LICs and linked the ontogenic differences
to the proteomic composition of the cells’ respective extracellular
environment. We have further interrogated the role of this
interplay on the cells’ secretome in mouse as well as human.
We delineate ontogenically conserved and developmentally
regulated molecular events in MLL::Eleven Nineteen Leukemia
(ENL/MLLT1)-mediated transformation and provide evidence for an
age-dependent difference in leukemia cell phenotype mediated
by cell-intrinsic as well as niche-associated factors. Our work has
identified promising age-tailored novel therapeutic targets to
effectively treat acute leukemias driven by MLL::ENL.
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RESULTS
Fetal MLL::ENL-expressing LMPPs give rise to progeny with an
immature lymphoid immunophenotype in vitro
Upon induced expression of the MLL::ENL as well as MLL::AF4
oncogenes, lymphomyeloid hematopoietic progenitor cells repre-
sent the most potent LICs among early hematopoietic stem and
progenitor cells (HSPCs) [22–24]. Lymphomyeloid multipotent
progenitors (LMPPs; Lin− Sca-1+ cKit+ (LSK) Flt3high CD150−)
additionally show marked differences in both proteotype and
differentiation-associated functions [11] and thus represent highly
interesting targets for exploration of the ontogenic effect on their
leukemic potential. In humans, the MLL::ENL fusion (resulting from
chromosomal translocation (11;19)(q23;p13.3)) is most commonly
associated with ALL in infants as well as in adults; however, the
mutation almost never gives rise to AML in infant children
whereas 22% of adults with the mutation present with myeloid
disease [7]. To investigate the lineage potential of normal relative
to transformed fetal (embryonic day [E] 14.5) and adult (6–10 week
old) LMPPs, we performed an in vitro differentiation assay using a
mouse model harboring doxycycline (DOX)-inducible expression
of MLL::ENL (iMLL::ENL mice) [23] (Fig. 1A). We observed retained
expression of the leukemia stem cell (LSC)-associated marker cKit
[25, 26] already at 4 days after induction of MLL::ENL expression
and a high production of cKit+ progeny from transformed cells in
cultures initiated with fetal LMPPs (Fig. 1B). In contrast, the
frequency of cKit+ cells from adult MLL::ENL-expressing LMPPs
surpassed the control cells with delay compared to fetal cells, only
at day 16 of culture (Fig. 1C).
Myeloid cell output was low from fetal as well as adult MLL::ENL-

expressing LMPPs (Fig. S1A), whereas B cell output increased in a near-
linear fashion during the culture period (Fig. S1B). Of note, while the
frequency of CD11b+ cells in fetal wells was very low at all assayed
time points, up to 50% of adult LMPPs intermittently produced high
numbers of myeloid progeny (Fig. S1A), indicating an ontogenic
difference in the myeloid potential of MLL::ENL-expressing LMPPs, as
previously observed for WT LMPPs in a similar culture setting [11] as
well as in this experiment (Fig. S1C, D). Interestingly, a population of
cKit+ Flt3+ cells emerged in MLL::ENL-induced fetal wells at day 7 of
culture (Fig. 1D). Critically, the same population was almost completely
absent from adult DOX-treated wells at all investigated time points,
and very few, if any, cKit+ Flt3+ cells were produced by fetal and adult
LMPPs in the absence of DOX (Fig. 1D, E). Within the hematopoietic
system, co-expression of cKit and Flt3 can be found on LMPPs as well
as common lymphoid progenitors (CLPs) [27, 28]. In addition, Flt3
expression has been proposed as a hallmark of ALLs harboring MLL
rearrangements [29], indicating that fetal, but not adult, MLL::ENL-

expressing LMPPs give rise to a lymphoid-like leukemic population
in vitro.
Collectively, the results from our in vitro assay show that

induction of MLL::ENL in fetal and adult LMPP confers LSC
properties to these cells and indicate a stronger lymphoid bias
in fetal compared to adult MLL::ENL-expressing LMPPs.

Fetal and adult LMPPs expressing MLL::ENL give rise to
aggressive leukemia in vivo
Next, we performed an in vivo assay of the leukemic potential of
fetal and adult LMPPs via transplantation into WT recipients
(Figs. 2A and S2A). To account for the effect of the niche
developmental stage in which MLLr leukemia is propagated [20],
we included adult as well as neonatal (24–48 h old) recipients.
Adult cells engrafted poorly in neonatal recipients, with no
peripheral blood (PB) chimerism above 0.2% by 37 weeks post-
transplantation (Fig. S2B). Chimerism in neonates transplanted
with fetal cells remained above 1% in 3 out of 4 recipients
throughout the assayed period, and only fetal cells gave rise to
multilineage progeny in mice that were neonatally transplanted
(Fig. S2B–E). However, none of the neonatal recipients developed
leukemia during the experiment.
43 and 80% of adult recipients of fetal and adult cells,

respectively, succumbed to disease, with recipients receiving
adult cells showing a shorter latency (Fig. 2B–E). One fetal and two
adult iMLL::ENL LMPP transplanted adult recipients showed a
spike in myeloid chimerism, a dramatic drop in B cell chimerism
(Fig. 2C), as well as a sharp increase in white blood cell (WBC)
count (Fig. S2F) shortly before death, indicating a highly
aggressive acute leukemia. Diseased adult cell recipients showed
almost exclusively myeloid chimerism at the time of or shortly
preceding death (Fig. 2F, G), confirming that adult LMPPs give rise
to AML upon induced expression of MLL::ENL in vivo [23, 24]. AML
could additionally be confirmed in one recipient of fetal LMPPs
(FL5; Fig. 2G). Although the remaining two diseased recipients of
fetal cells died before the onset of detectable morbidity, no signs
of myeloid disease could be observed in PB collected within three
weeks before death, at which point most of the donor-derived cell
pool consisted of B cells (Figs. 2G, S2G, H).
Taken together, our results show that both fetal and adult LMPPs

can act as potent LICs upon expression of MLL::ENL and give rise
primarily to AML in vivo. This contrasts our in vitro findings, hence
indicating that the adult microenvironment promotes myeloid
programs in cells expressing MLL::ENL, while the neonatal microenvir-
onment supports the fetal counterpart to a greatly elevated capacity
to engraft and sustain multilineage hematopoiesis.
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Fig. 1 LMPPs expressing MLL::ENL show ontogenic differences in lineage output in vitro. A Workflow for in vitro differentiation of fetal and
adult LMPPs derived from iMLL::ENL mice. Expression of the oncogene was induced by addition of doxycycline (DOX) to the cultures.
B, C Frequency of cKit+ cells derived from fetal (B) and adult (C) MLL::ENL-induced (+DOX) and non-induced (−DOX) LMPPs. D, E Frequency of
cKit+ Flt3+ derived from fetal and adult MLL::ENL-expressing (D) and normal (E) LMPPs. n= 4 for all displayed graphs. Error bars represent SD.
****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 and ns not significant. See also Fig. S1.

M. Jassinskaja et al.

2

Leukemia



Protein expression accurately separates fetal and adult LMPPs
on ontogenic and disease state
Having established the leukemic potential of fetal and adult
MLL::ENL-expressing LMPPs, we set out to delineate the molecular
features governing the earliest stages of leukemic transformation.

Following 4 days of culture in the presence of DOX, a block in
differentiation was already evident in fetal and adult iMLL::ENL
LMPPs (Fig. 3A, B). We FACS-sorted 40,000 live NK1.1− CD11c−

B220− Ly6G− cells per sample from these cultures in four
biological replicates and subjected the cells to a quantitative
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mass spectrometry (MS)-based proteomic workflow adapted for
low cell numbers (Fig. 3C) [11, 30–32]. We identified 3585 proteins
out of which 2769 were quantified across all four conditions with
high reproducibility (Fig. S3A, B and Table S1).
Principal component analysis (PCA) of the 300 most variably

expressed proteins showed a clear separation of samples on both
ontogenic state and oncogene expression (Fig. 3D). PCA indicated
greater separation between fetal WT and MLL::ENL-expressing cells
than the respective populations in the adult, suggesting more
pronounced molecular changes in the fetus compared to the adult
upon onset of pre-leukemia, and/or that these molecular changes
occur faster in the fetus. Both principal component (PC) 1 and PC2
showed significant correlation with the cellular composition of the
assayed samples (Fig. 3E). Intriguingly, PC1, which most clearly
separated fetal and adult samples (Fig. 3D), showed a particularly
high correlation with the frequency of Flt3+ cells in the samples, in
line with the lymphoid bias of fetal pre-leukemic cells observed

in vitro (Fig. 1D). We extracted the loadings for PC1 and PC2 and
examined which hematopoietic cell types these proteins are
associated to [33] (Fig. 3F, G). Samples further left in the PCA plot
(“PC1low”; fetal WT and fetal MLL::ENL samples) showed strong
association with several different lymphoid cell types, including ProB
and T cells (Fig. 3F). PC1high samples (adult WT and adult MLL::ENL)
on the other hand showed stronger association with myeloid
progenitors. PC2high samples, which include fetal as well as adult
MLLr cells, showed stronger association with the most immature
hematopoietic progenitors than the WT (PC2low) samples (Fig. 3G).
Collectively, this data shows that protein expression strongly

separates healthy and pre-leukemic cells, as well as fetal and adult
cells, as early as four days after induction of oncogene expression. In
line with the behavior of healthy LMPPs [11], PCA additionally
suggests a stronger retainment of lymphoid features in fetal cells
compared to adult upon oncogene expression, whereas the opposite
is true for myeloid features.

Fig. 2 Fetal and adult LMPPs expressing MLL::ENL give rise to aggressive leukemia in vivo. A Workflow for transplantation of fetal and
adult iMLL::ENL LMPPs into WT adult and neonatal recipients. n= 4 per group for neonatal recipients and n= 7 and 5 for adult recipients of
fetal and adult iMLL::ENL LMPPs, respectively. For neonatal recipients, the pregnant females were put on a DOX-containing diet at E18.5, and
adult recipients were put on a DOX-containing diet 4 days prior to transplantation. B Donor chimerism in peripheral blood of adult recipients
transplanted with fetal or adult iMLL::ENL LMPPs. C Myeloid, B- and T cell chimerism in adult recipients transplanted with fetal or adult
iMLL::ENL LMPPs. D Survival of adult recipients transplanted with fetal or adult iMLL::ENL LMPPs. E Representative images of spleens harvested
from moribund or deceased mice (transplanted with fetal (left) or adult (middle) iMLL::ENL LMPPs) and healthy controls (right). F Distribution
of myeloid, B- and T cells in peripheral blood (PB), bone marrow (BM), and spleen of leukemic mice at time of death. Donor sample names are
listed on the y-axis. FL fetal liver and ABM adult bone marrow. G Classification of leukemia subtype in adult recipients transplanted with
iMLL::ENL fetal or adult LMPPs. Myeloid and B cell chimerism in PB at time of death and/or in the last assayed timepoint before death. Donor
sample names are listed. n.a. refer to recipients that died before the onset of detectable morbidity. FL fetal liver, ABM adult bone marrow, my
myeloid, B B cell, chim chimerism. See also Fig. S2.
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bars represent SD. ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 and ns not significant. See also Fig. S3 and Table S1.
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Proteome analysis identifies ontogeny-specific and
ontogenically conserved features of MLL::ENL-mediated
transformation
Statistical analysis identified 31 and 25 proteins as differentially
expressed (adjusted p-value < 0.05) between WT and MLL::ENL-
expressing cells in fetus and adult, respectively (Figs. 4A–C
and S4A). STRING analysis [34] of significantly changed proteins
revealed several of these to be interaction partners acting within
the same network (Fig. 4D). Among proteins significantly

downregulated upon oncogene expression, 5 proteins were
shared between fetus and adult: Arid2, Csf1r, Plin2, S100a10,
and Prtn3, with several others (e.g. S100a9, Anxa1, Anxa3, and
Soat1) showing concordant average expression changes but only
reaching statistical significance in one of the two comparisons
(Figs. 4C and S4A). Many of these proteins (Arid2, Csf1r, Prtn3,
Anxa1, Anxa3, and S100a9) are associated with terminal differ-
entiation [35, 36], and the decrease in their expression is thus in
line with the rapid differentiation block induced by MLL::ENL
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(Fig. 3A, B). Soat1 and Plin2 highlight lipid storage as another
shared feature downregulated upon MLL::ENL induction. Shared
proteins upregulated in the pre-leukemic samples included Satb1,
Tubb2a, Cnn3, Nedd4, and Cand2 (Fig. 4C). Satb1 has previously
been shown to be associated with heightened hematopoietic
stem cell (HSC) self-renewal [37], whereas the role of Tubb2a,
Cnn3, Nedd4, and Cand2 in hematopoiesis and/or leukemia is
poorly described. Mapping protein expression to genes previously
identified as differentially expressed between normal and pre-
leukemic adult pre-granulocytes-monocyte (pGM) progenitor cells
[23] showed an overall agreement between adult upregulated
protein and mRNA, while Ctse transcript was downregulated and
the corresponding protein upregulated (Fig. S4B).
Several proteins only showed expression changes in one of the

two comparisons, or even opposing changes upon leukemia
initiation in fetal versus adult cells. Particularly interesting
examples are components of the histone deacetylase (HDAC)
signaling pathway – Hdac3 and Rbbp4 – which were upregulated
in pre-leukemic relative to control cells in fetal but not in adult
cells (Fig. 4C). These proteins may contribute to differential
sensitivity of infant and adult leukemia to HDAC inhibitors, which
have recently emerged as a promising anti-cancer therapy for
MLLr leukemia specifically [38–40]. A protein that was strongly
upregulated exclusively in adult pre-leukemic cells was Igf2r,
which is classified as a growth inhibitor and has also been
proposed as a target for tumor control [41]. The opposing
expression pattern of the p53 target Trp53i11, with elevated
expression in adult cells while reduced in fetal cells upon leukemic
transformation, indicates that fetal cells more rapidly suppress
apoptotic pathways following mutation acquisition.
Gene set enrichment analysis (GSEA) showed strongly disparate

features of leukemic transformation in fetal and adult cells
(Fig. 4E, F, and Table S2). Upon expression of MLL::ENL, fetal
LMPPs showed an upregulation of proteins associated with
translation, whereas proteins downregulated upon transformation
in adult cells showed enrichment for mTORC signaling, indicating
a decrease in translational activity in adult pre-leukemic relative to
healthy cells. The opposing changes in expression of translational
proteins upon MLL::ENL expression, including most proteins of the
40S and 60S ribosomes (Fig. 4G), is particularly intriguing
considering that a high versus low translation rate is one of the
key differences between normal fetal and adult HSPCs [42]. Since
ribosomal genes are enriched in primary cells immortalized by
MLL::ENL [43], the anticorrelating behavior of associated proteins
observed here may indicate that fetal-origin LMPPs take on
leukemic features more rapidly than their adult counterpart upon
induced expression of MLL::ENL.
Proteins significantly downregulated in pre-leukemic relative

to normal fetal cells were enriched mainly for gene sets
associated with myeloid differentiation and inflammation
(Fig. 4E), again highlighting a broad loss of myeloid features in
these cells upon expression of MLL::ENL as previously discussed
(Figs. 1D, 3A, B). Critically, this was not the case for adult pre-
leukemic cells, which showed downregulation of proteins
associated with glycolysis and hypoxia (in addition to mTORC
signaling; Fig. 4F), indicating that metabolic rewiring and
adaption to changing oxygen levels are features unique to early
leukemogenesis in the adult.
Next, we performed statistical analysis of fetal versus adult cells

in WT and MLLr samples and overlayed significantly changed
proteins (Figs. 4H, S4C, D, and Table S1). 45 proteins that showed
differential expression between fetal and adult WT cells main-
tained similar expression differences upon oncogene expression
(Fig. S4C). Interestingly, this set of proteins contained B cell-
associated proteins CD79a and Mzb1 that were elevated in fetal
cells, and myeloid proteins Mpo and Ctsg that were higher
expressed in adult cells. This again highlights that lineage-
associated differences that are present in normal fetal and adult

cells are retained upon expression of MLL::ENL. The B cell receptor
(BCR) component CD79a additionally showed significant down-
regulation in fetal pre-leukemic cells while remaining unchanged
in adult pre-leukemic cells (Fig. 4C). The drop in expression upon
induction of MLL::ENL in fetal LMPPs is in line with the
differentiation block induced by the fusion oncogene (Fig. 3A, B).
Aberrant pre-BCR and BCR signaling play a central role in B cell
neoplasia, with enhanced positive signaling of the pre-BCR
promoting B-ALL [44], and upregulation of CD79a has been
proposed to increase the risk for infiltration of the central nervous
system in pediatric B-ALL [45]. Analysis of CD79a surface
expression on cultured fetal and adult iMLL::ENL LMPPs showed
a higher presence of CD79a+ cells in fetal compared to adult pre-
leukemic samples, and a decrease in CD79a surface expression on
adult pre-leukemic relative to uninduced cells (Fig. S4E, F).
Together with our proteome data, this points towards dysregula-
tion of signaling via this receptor as a feature associated with
MLL::ENL-driven transformation, particularly in fetal cells.
Cross-comparison between proteins differentially expressed

between fetal and adult, and WT and MLLr, cells revealed a
multitude of proteins that were expressed at similar levels
between fetal and adult WT cells but showed differential
expression when comparing fetal and adult MLLr cells due to
changes in their levels upon induction of the oncogene (Fig. 4H).
This included several members of the protein folding machinery –
specifically, Hspe, Hspd1, and Cebpz. While largely unchanged in
adult normal versus pre-leukemic cells, these proteins were
upregulated in fetal cells upon induction of MLL::ENL (Table S1),
leading to differential expression between fetal and adult MLLr
cells (Fig. 4H). Upregulation of heat shock proteins (HSPs), in
particular Hspd1, has previously been identified as a poor
prognostic factor in AML [46]. Further, we found that fetal relative
to adult MLLr cells showed elevated expression of Mthfd2l and
Mthfd2, which were previously shown to be the most strongly
differentially expressed metabolic enzymes in MLL::AF9 AML
samples compared to control cells, and whose knockdown
improves survival in a mouse model of the disease [47]. Similarly,
the protein Mtap showed differential expression between fetal
and adult MLLr cells due to a drop in expression in adult cells
upon induction of MLL::ENL. Low expression of this phosphorylase
has previously been shown to increase the sensitivity of T-ALL
cells to purine synthesis inhibition or methionine starvation [48].
Our data thus suggests ontogenic differences in the sensitivity of
MLL::ENL-driven leukemia to inhibition of pathways under the
control of Mthfd2 and Mtap, highlighting potential opportunities
for age-tailored therapeutic approaches.

The proteomic composition of the extracellular environment
of fetal and adult HSPCs displays significant differences
Our in vitro and in vivo assays highlighted that extracellular factors
play a role in influencing the behavior of the cells upon leukemic
transformation (Figs. 1 and 2). We therefore sought to determine
the proteomic composition of the extracellular milieu where fetal
and adult LICs reside, i.e. the extracellular fluid (EF) extracted from
the FL and adult bones of WT animals (Figs. 5A and S5A). Low
between-tissue correlation (Fig. S5B, C) together with a clear
separation in principal component space (Fig. 5B) suggest a
difference in complexity between these two extracellular com-
partments. Although the number of identified proteins showed a
significant overlap between BMEF and FLEF, with 5276 proteins
identified in both compartments, an additional 840 proteins were
uniquely identified in FLEF (Fig. 5C), and 2611 proteins showed
differential presence in FLEF and BMEF (fold change >2, adjusted
p-value < 0.001; Fig. 5D and Table S3). Amongst these, similar to
previous EF reports [49], we found 5% (91) FLEF-enriched and 16%
(129) BMEF-enriched proteins known to be secreted or annotated
as extracellular (Figs. 5E and S5D). The remaining proteins may be
secreted through non-canonical secretion pathways such as via
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extracellular vesicles, and may also represent a certain amount of
intracellular leakage.
Among the top 10 extracellular proteins at higher levels in FLEF

(Figs. 5D and S5E), we found three apolipoproteins (Apob, Apoe,
and Apom). Apolipoproteins are major regulators of cholesterol
metabolism and the protein constituents of lipoproteins. Apoe has
additionally been associated with regulating HSPC proliferation,
myeloid cell expansion, and anti-tumor immunity [50, 51]. In
addition to lipid metabolism, GSEA showed strong enrichment for
various metabolic processes in FLEF (Fig. 5F and Table S4). This
included citrate cycle, oxidative phosphorylation, and amino acid
degradation, indicating a broad metabolic signaling active in the
liver already during embryonic development. On the other hand,
cluster-wise enrichment analysis showed that proteins uniquely and
highly abundant in BMEF associate with fatty acid biosynthetic
process as well as oxidative phosphorylation (Fig. S5F). For example,
four members of NADH dehydrogenase (Ndufa2, Ndufa7, Ndufs5,
and Ndufv3) were all uniquely present in the BMEF (Table S3),
indicating specific extracellular function for these metabolic
enzymes in BMEF and possible unique regulation of the leukemia
microenvironment of adults, as suggested for other cancers [52].
We found both Fibulin-1 and Fibronectin (Fbln1 and Fn1,

respectively) to be more abundant in FLEF compared to BMEF
(Figs. 5D and S5E). Fbln1 is an extracellular matrix (ECM) protein
known to be secreted by osteoblasts in the BM HSC niche and to
interfere with human CD34+ cells’ adhesion to Fn1, and inhibit
their proliferation [53]. The higher presence of both Fbln1 and Fn1
in FLEF thus suggests an enhanced impact of their interaction in
FLEF compared to BMEF. In addition, we found Lysyl oxidase (Lox),
a key protein for ECM organization and a novel therapeutic target
for primary myelofibrosis [54], to be more abundant in the FLEF
relative to BMEF (Figs. 5D and S5E).
Among processes augmented in BMEF relative to FLEF, we

found an enrichment mainly for DNA replication and damage
repair pathways (Fig. 5F). We identified several proteins associated
with inflammatory response to be enriched in BMEF relative to
FLEF (Bgn, Lipa, and Hpx; Figs. 5D and S5E). Differential expression
of inflammatory proteins is one of the main distinguishing
features between fetal and adult HSPCs [10, 11] and our
intracellular proteome data showed even further suppression of
these signatures in fetal LMPPs upon expression of MLL::ENL
(Fig. 4E). Our EF findings suggest that the low inflammatory
activity observed in normal and pre-leukemic fetal HSPCs
additionally extends to the extracellular environment within the
FL. Along the same lines, we found that components of the
immunoproteasome (Psmb8, Psmb9, Psmb10) are present at
lower levels in FLEF compared to BMEF (Fig. 5G), suggesting that
their differential extracellular presence [55–57] affect leukemia
burden [58, 59] and may render them sensitive to blockage of
proteasome-mediated protein degradation [60].

Secretome and ligand-receptor networks uncover fetal and
adult-specific interplay of intra- and extracellular factors
To interpret possibilities of the FL and adult BM microenvironment
to influence the onset and initial stages of MLLr leukemia, we
interrogated the proteomic data from pre-leukemic cells for cell
surface receptors and their corresponding ligands in the EF
proteome [61, 62] (Fig. 6A and Table S5). We also characterized
homeostatic interactions by mapping receptors from our pre-
viously published fetal and adult WT HSPC proteome [10] (Fig. S6A,
B). A set of cellular integrins showed prominent differences in their
ligandome between FLEF and BMEF. Particularly, 18 of the ligands
of Itgb1 (CD29) and four of the ligands of Itga4 (CD49d) showed
differential abundance between FLEF and BMEF (Fig. S6B). On
leukemic cells, the dimer of these integrins (also known as VLA-4)
interacts with the stromal ligands Vcam1 and Fn1 to support
attachment to the bone marrow niche [63, 64]. We found both
Vcam1 and, as previously highlighted, Fn1 and its antagonist

Fbln1, to be higher abundant in FLEF relative to BMEF (Fig. 6A),
suggesting a stronger impact of VLA-4/Vcam1 and VLA-4/Fn1
interactions in fetal-origin leukemia. We investigated potential cell
surface oncogene-driven changes to the VLA-4 dimer and
observed significant, ontogeny-specific changes upon induction
of MLL::ENL expression (Fig. 6B–G). Upon expression of the
oncogene in fetal as well as adult cells, the frequency of double-
positive cells was diminished (Fig. 6B), while the frequency of
double-negatives increased significantly (Fig. 6C). The frequency
of CD29 (Itgb1) single-positive cells also increased for both fetal
and adult MLL::ENL cells, and this was especially prominent in
adult-derived cultures (Fig. 6D). In fetal pre-leukemic cultures, we
additionally observed a decrease in CD49d (Itga4) single-positive
cells (Fig. 6E). Interestingly, the addition of Fn1 and/or Fbln1 to
fetal pre-leukemic cultures reversed the pre-leukemic increase in
frequency of double-negative cells (Fig. S7). This further corrobo-
rates that the higher presence of Fn1 and Fbln1 in the
microenvironment of fetal LICs (Fig. 6A) plays a direct role in
influencing their interaction with VLA-4 on the cells. On the other
hand, elevating the presence of Fn1 and Fbln1 around adult pre-
leukemic cells seems to influence their behavior in terms of
directing them towards a more lymphoid phenotype (Fig. 6H, I).
While the addition of Fbln1 to the adult cultures increased their
lymphoid bias, the addition of Fn1 strongly suppressed their
myeloid bias. In addition, out of two infant and two adult MLLr
leukemia cell lines assayed in the presence of Fn1 and/or Fbln1
(Fig. S8), only the infant MLL::ENL ALL cell line KOPN-8 showed a
decrease in viability, which was attributed to Fn1 (Figs. 6J and S8B).
While the two adult leukemic cell lines showed robust double-
positive VLA-4 dimer expression regardless of Fn1 and Fbln1
presence, the infant cells indicated mild alterations to the dimer
with Fbln1 (KOPN-8, Fig. S8G) and Fn1 (THP-1, Fig. S8H).
To investigate the pre-leukemic cells’ potential to influence and

communicate with their microenvironment, and what impact
ontogeny-specific extracellular factors Fn1 and Fbln1 may have in
this communication, we designed a secretome analysis using an
albumin-free polyvinyl alcohol (PVA) culture system [65] (Fig. S9A).
Intriguingly, fetal and adult pre-leukemic cells showed marked
differences in their protein secretion profiles. While adult cells
increased their secretion upon MLL::ENL induction, fetal pre-
leukemic cells instead suppressed secretion (Figs. 7A and S9C),
suggesting that adult pre-leukemic cells more actively influence
their microenvironment and engage in communication with
surrounding cells. Although not statistically significant, amongst
the strongest suppressed proteins from fetal cells were several
cathepsins (Ctsa, Ctsb, and Ctsz; Fig. 7A). From the adult cells, the
strongest induced secretion was found for Fn1, and the majority
of statistically significant changes involved proteins related to
neutrophil and platelet degranulation pathways (Fig. 7B, C), again
highlighting a retention of myeloid features upon induced
expression of the oncogene.
When we added Fn1 and/or Fbln1 to pre-leukemic cultures, the

secretome profiles distinctly separated the Fn1- and Fbln1- treated
groups in PCA (Figs. 7D and S9D), suggesting that Fbln1 has stronger
impact than Fn1 on both fetal and adult pre-leukemic secretion.
Importantly, Fbln1 supplement to adult pre-leukemic cultures led to a
generally suppressed secretion of the proteins that were induced by
the expression of MLL::ENL (Figs. 7E and S9E). In adults, 6 proteins
involved in neutrophil degranulation (Gusb, Ctsb, Rnaset2a, Cst3, Ctsz,
Npc2) that showed induced secretion upon oncogene expression
showed significant suppression of secretion with the dual Fn1 and
Fbln1 treatment (Figs. 7E and S9E). Interestingly, while the overall
pattern of differential secretion of neutrophil degranulation proteins
from fetal pre-leukemic cells was not evident, a group of neutrophil
primary granule proteins showed an interesting reversed pattern of
secretion upon the Fn1 and Fbln1 treatment (Fig. 7F). Collectively, our
data highlight distinct alterations to granule protein secretion from
fetal and adult pre-leukemic cells.
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Integrated proteomic analyses highlight differential
modulation of IGF-signaling with impact on leukemic protein
secretion
Our intracellular and EF analyses revealed variations in the points
of regulation of the insulin-like growth factor (IGF) pathway across
ontogeny as well as in MLLr leukemia. We found the receptor for

Igf2 (Igf2r) to be significantly upregulated upon MLL::ENL
expression uniquely in adult LMPPs (Fig. 6A). Of note, the higher
expression of Igf2r in fetal cells compared to adult cells in
homeostatic conditions is retained in pre-leukemic conditions
(Fig. S4D). A higher cell surface expression of Igf2r can be
expected to result in decreased IGF-signaling within the cells
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through Igf1r and insulin receptor [66]. In the extracellular
environment, the FLEF showed higher expression of Igfbp4 and
Igfbp5 than BMEF, which may contribute to prolonged half-life of
Igf1 and Igf2 in FLEF [67] and diminished bioavailability of Igf1 and
Igf2 for IGF-signaling [66]. This is in line with the higher presence
of Igf1 in FLEF (although not significant), and the detection of Igf2
in only one of the BMEF samples and at higher levels in all four
FLEF samples (Table S3). In addition, we found Igf2bp1 to be
upregulated in fetal cells upon MLL::ENL expression, and
unchanged in adult cells (Fig. 4C), likely decreasing the
intracellular levels of Igf2 in fetal pre-leukemic cells by repression
of Igf2 mRNA translation [68]. Together, our results indicate that
adult LICs alter IGF-signaling through upregulation of Igf2r, while
fetal LICs have modulated IGF-signaling through extrinsic regula-
tion of ligand availability at steady state, as well as intracellular
regulation of Igf2 expression. Treatment of fetal and adult pre-
leukemic cells with Igf2 in culture had minor effects on cellular
output (Fig. S10A, SB). However, in the absence of oncogene
expression, Igf2 appeared to exert a mild anti-differentiation effect
on fetal normal cells and a pro-differentiation effect on adult
normal cells (Figs. S10A–C). Interestingly, the infant leukemia cell
lines KOPN-8 and THP-1 both showed decreased viability in the
presence of IGF2, while adult leukemia cells (Mono-Mac-6 and
NOMO-1) were unaffected (Figs. 8A, B, and S10E). This effect was
distinct from alterations in IGF2R surface expression (Fig. S10F, G),
and a short and moderate blocking of the IGF2R prior to addition
of IGF2 to the cultures was not sufficient to reverse the observed
effect (data not shown). Nevertheless, phospho-proteome analysis
confirmed the preferential internalization of IGF2 by IGF2R
(Fig. 8C), with no evidence of classical phospho-signaling through
IGF1R or insulin receptor (Fig. S11A, B).
Because of this specific viability effect of IGF2 on infant

leukemia cells, we further investigated the potential effects to
their secretome (Fig. S10D). Intriguingly, both cell lines showed an
intensified secretion upon IGF2 treatment (Fig. S11C), and the
proteins with induced secretion largely related to neutrophil
degranulation, including many cathepsins as well as ELANE, MPO
and PRTN3 (Fig. 8D). By mapping our fetal mouse pre-leukemic
secretome to the human infant leukemia secretome, we observed
the reversal of secretion of these proteins with the addition of
IGF2 to the human leukemia cells (Fig. 8E, F). Collectively, the
analyses highlight IGF2 bioavailability as a potential point of
vulnerability in infant MLLr leukemia.

DISCUSSION
In this work, we have characterized the functional and proteomic
events governing the first stages of leukemic transformation in
fetal- and adult-derived LMPPs. In addition, we have described the
proteomic composition of the extracellular milieu of the potential
LICs and connected that to their protein secretion, as well as to
secretion from human leukemic cells. Our work has uncovered

ontogenically conserved as well as developmentally regulated
molecular signatures of fetal- and adult-derived MLL::ENL-
mediated leukemia, as well as highlighted an interplay of intra-
and extracellular factors in determining disease phenotype and
progression.
Our analysis of the in vitro lineage potential of fetal and adult

MLL::ENL-expressing LMPPs shows an intrinsically programmed
lymphoid bias in in utero-derived lymphomyeloid progenitor cells,
which is in line with our previous findings regarding a diminished
capacity for myeloid differentiation in fetal relative to adult
LMPPs [11]. In vivo, however, both fetal and adult LMPPs give rise
to AML in adult mice. Although translocations of the MLL gene in
humans frequently gives rise to lymphoid leukemia [7], most
transplantation-based mouse models of MLLr leukemia, including
the model utilized in this study, exclusively develop AML in vivo
[15, 19, 23, 24]. In line with recent work highlighting
transplantation-related stress as a potential cause for this bias
[19], donor cells in neonatal recipients, that were conditioned
considerably less harshly than adult recipients in our transplanta-
tion assay, showed more balanced output. Furthermore, the
developmental stage of the niche in which leukemia is
propagated has recently been identified as a strong determinant
of MLLr leukemia phenotype [20]. Although neonatal recipients
failed to develop leukemia during the assayed time course of our
transplantation experiment, only fetal MLL::ENL-expressing cells
were capable of long-term engraftment and multilineage
contribution in a neonatal environment, further corroborating
that cell-intrinsic and extrinsic factors synergize during MLLr
leukemia development and maintenance. In line with this,
survival appeared worse in adult recipients of adult cells
compared to animals transplanted with fetal cells. This difference
could additionally be attributed to fetal-specific RNA-binding
protein Lin28b acting as a barrier towards development of
MLL::ENL-driven AML [69].
Our proteome data points towards differentiation arrest, a

hallmark feature of cancer [70], as an ontogenically conserved
early event in MLL::ENL-mediated transformation. Importantly, we
identify several age-specific events occurring during early
leukemogenesis, including differences in cell identity following
transformation where fetal cells appear to have a more lymphoid-
like and immature phenotype compared to adult cells, which
instead retain more myeloid features upon induced expression of
the oncogene. We additionally show that proteins involved in
HDAC signaling, apoptosis, and translation exhibit ontogeny-
specific changes in expression upon transformation, indicating
potential differences in the vulnerability of the cells to modulation
of these processes. Overall, several highlights in our data point to
that fetal LMPPs more rapidly acquire leukemic molecular features
than adult cells. This may partly explain the cells’ higher
susceptibility to MLLr leukemia transformation without secondary
mutation. In particular, fetal MLLr cells may be more sensitive to
endoplasmic reticulum (ER) stress than their adult counterpart, as

Fig. 7 Fetal and adult LMPPs show distinct protein secretion patterns in response to Fn1 and Fbln1 treatment during MLLr leukemia
initiation. A Heatmap showing average log2 fold change of significantly changed (adjusted p-value < 0.05) proteins with ‘extracellular’
annotation in adults but not in fetal between the secretome of pre-leukemic and WT cells. FC= fold change. B Protein network of significantly
differentially secreted (adjusted p-value < 0.05) ‘extracellular’ proteins between the secretome of pre-leukemic and WT cells in adults. Edges
represent known and predicted protein–protein interactions from STRING. Node fill colors indicate pathway assignments from Reactome
database. C Heatmap showing average log2 fold change of ‘extracellular’ proteins involved in the ‘neutrophil degranulation’ pathway (from
Reactome) between the secretome of MLLr and WT fetal and adult cells. Significantly changed proteins (adjusted p-value < 0.05) are marked
with star. D PCA for the significantly changed (adjusted p-value < 0.05 in at least one group) ‘extracellular’ proteins in the secretome of pre-
leukemic fetal and adult cells treated with/without Fn1, Fbln1, and Fbln1+ Fn1. E Scatterplots showing the average log2 fold secretion
difference between MLLr and WT cells, and between untreated MLLr cells and MLLr cells treated with Fn1, Fbln1, or Fbln1+ Fn1 in adult. The
color code corresponds to the involvement of the proteins in the Reactome pathway. F Average log2 fold change for the ‘neutrophil primary
granule’ proteins in the secretome between MLLr and WT cells, and between untreated MLLr cells and MLLr cells treated with Fn1, Fbln1, or
Fbln1+ Fn1 in fetal and adult. adj. adjusted, FC fold change. n= 6 for all conditions, except FL WT (n= 5) and FL MLLr (n= 5). See also Fig. S9
and Table S6.
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translation-related processes were strongly enriched among
proteins significantly upregulated in fetal pre-leukemic versus
WT cells. In addition, in homeostatic settings, fetal HSPCs have a
higher tolerance for translation-associated ER stress than adult

cells [42]. Our data suggest that like normal adult HSCs, adult LSCs
may require a low translation rate to maintain function, whereas
fetal pre-leukemic cells are capable of increasing translation rate
beyond its already high baseline level. Our findings regarding
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elevated expression of Hdac3 and Rbbp4 in fetal but not adult pre-
leukemic cells compared to WT may also have implications for the
design of treatment schemes involving HDAC inhibitors for infant
and adult leukemia.
Considering that normal fetal and adult HSPCs are hallmarked

by a high expression and activity of translation-associated and
inflammatory proteins, respectively [10, 11], our findings here
indicate that oncogenes such as MLL::ENL may hijack and amplify
these differences to maintain and drive leukemia at the respective
ontogenic stages. In addition, some pre-leukemic features that
show ontogeny-specific changes upon MLL::ENL expression
extend to the microenvironment of the LICs. This was particularly
prominent regarding metabolic processes, which were suppressed
uniquely in the adult MLL::ENL-expressing cells, and the BMEF
showing lower presence of diverse metabolic proteins compared
to FLEF. In addition, we found differential regulation of Igf2
bioavailability and VLA-4 dimer interactions in fetal and adult pre-
leukemic cells. The ex vivo assays emphasized that extracellular
factors that are present in different quantities in the microenvir-
onments of fetal and adult LICs play a role in the cells’ ability to
communicate with their surroundings. Critically, differential
dependency on the Igf2/Igf2r and Fn1/VLA-4 axes upon initiation
of fetal- and adult-origin MLLr leukemia may represent an
opportunity for targeting ontogeny-specific vulnerabilities in in
utero-derived and adult-onset leukemia.
A striking finding was the alterations to secretion of proteins

relating to neutrophil degranulation, and the co-induction of
neutrophil and platelet-associated defense response of adult cells
upon MLL::ENL induction. The release of these proteins from
neutrophils or platelets is recognized as first-line defense
mechanisms of the immune system [71]. We have previously
shown the presence of neutrophil granule proteins already from
the short-term HSC stage of adult hematopoiesis [72] and a very
low expression in fetal HSPCs [10]. Our findings here, that such
first-line defenders of immunity are released from pre-leukemic
and leukemic cells, and largely contribute to the cells’ ontogenic
features of communication with their surroundings, is intriguing.
Moreover, we found that the secretion of neutrophil degranula-
tion proteins is influenced by both intra- and extracellular
ontogeny-specific factors. Future studies will be necessary to
better understand the impact of their secretion on leukemia
progression.
Collectively, our study sheds light on the molecular under-

pinnings that are responsible for different disease phenotypes in
infant and in adult MLLr leukemia. The identified differential
proteomic features that we have revealed here represent
vulnerabilities of disease biology and important opportunities
for exploration of novel age-tailored therapies to improve the
outcome of MLLr leukemia patients.

METHODS
Details of the methods are provided in the Supplemental Information.

Mice
The inducible mouse model of MLL::ENL-driven leukemia (Col1a1TetO_MLL-ENL,
CD45.1) has been described previously [23]. Wild-type C57Bl/6 N mice
(CD45.2) were purchased from Taconic Biosciences or bred in-house. All
experiments involving animals were performed in accordance with ethical
permits approved by the Swedish Board of Agriculture.

Flow cytometry and FACS
Fetal and adult LMPPs, from E14.5 FL and ABM, respectively, were FACS-
sorted as previously described [11]. For proteomics, fetal and adult
LMPPs co-cultured for 4 days with OP9 cells were collected and surface-
stained with fluorophore-conjugated antibodies against cKit, Flt3,
CD11b, CD19, Ly6G, B220, NK1.1 and CD11c. 7AAD was added shortly
before analysis to exclude dead cells. All flow cytometry and FACS
experiments were performed at the FACS Core Facility at Lund Stem Cell
Center.

In vivo leukemia analysis
A volume corresponding to 2000 MLL::ENL LMPPs and 300,000 WT support
cells was injected intravenously via the facial vein (neonates) or tail vein
(adults) into WT recipients. Disease progression was assessed in PB every
3 weeks starting from 4 weeks post-transplantation by Sysmex and flow
cytometry.

Culture assays
For coculture experiments, fetal and adult WT and iMLL::ENL LMPPs were
FACS-sorted into 48-well plates onto pre-established layers of 10,000 OP9
cells per well. For suspension culture experiments, fetal and/or adult
iMLL::ENL LMPPs were FACS-sorted into 96-well plates. MLL::ENL expression
was induced by addition of 1 μg/ml doxycycline hyclate (DOX; Merck).
Recombinant mouse or human IGF2 (R&D Systems) was added at 50 or
2000 ng/ml (to mouse cells) and 2000 ng/ml (to human cells).
Recombinant Fn1 (R&D Systems) was added at 6 μg/ml and Fbln1 (R&D
Systems) was added at 2 μg/ml.

Proteomic sample preparation and mass spectrometry
Cell pellets corresponding to 40,000 cells were processed using in-StageTip
(iST) NHS sample preparation kit (PreOmics) in accordance with
manufacturer’s protocol. Digested peptides were labeled using TMTpro
reagents (Thermo Scientific). Following desalting, labeled peptides were
combined and high-pH-reverse phase (HpH-RP) pre-fractionation was
carried out as previously described [11, 30].
The EF collection protocol was modified from previous procedures

[49, 73]. One femur and one tibia per mouse (WT) were punctured at both
ends, and placed on in-house made ‘3-trap’ tubes. 50 µl sterile PBS was
added to the inner tube, and the samples were centrifuged at 300 × g for
5 min and an additional 2 min at 500 g without bones before collecting the
BMEF. FLs from 9 WT embryos (E14.5) were washed with sterile PBS and
placed into a 40 µm cell strainer. 50 µl sterile PBS was injected into the FL
before centrifugation at 400 × g to obtain the FLEF. BMEF and FLEF
samples were cleared at 2000 g, snap frozen and kept at −80 °C for further
processing. The nine FLEF samples were pooled into four samples. BMEF
and FLEF were concentrated with Amicon 3 K filters. Concentrated EF
samples were diluted in 50mM ammonium bicarbonate (Sigma) with 0.1%
RapiGest (Waters), proteins digested overnight with trypsin (Promega), and
the resulting peptides were desalted.

Fig. 8 Integrated secretome and phospho-proteome analysis highlight differential modulation of IGF-signaling with impact on leukemic
protein secretion. A, B Viability of THP-1 (A) and KOPN-8 (B) cells following treatment with IGF2 for 4 days. n= 6. Error bars represent SD.
****p < 0.0001, ***p < 0.001. C Log2 protein abundance of IGF2, IGF2 receptor (IGF2R), and IGF2 binding proteins (IGF2BP1, IGF2BP2, and
IGF2BP3) in THP-1 and KOPN-8 cell lines treated with/without IGF2. LFQ label-free quantification. n= 4. D Protein network of commonly
induced ‘extracellular’ proteins in the secretome of THP-1 and KOPN-8 treated with IGF2. Edges represent known and predicted
protein–protein interactions from STRING and node color indicates the Reactome pathway assignments. E Scatterplot showing the average
relative expression difference in the secretome of mouse MLLr/WT fetal LMPPs (x-axis) and in the secretome of THP-1 cells treated with/
without IGF2 (y-axis). Red color mark proteins involved in the neutrophil degranulation pathway and the bold borders represent proteins
significantly changed (adjusted p-value < 0.05) between IGF2-treated and control THP-1 cells. Mouse and human proteins were mapped by
their gene names. F Scatterplot showing the average relative expression difference in the secretome of mouse MLLr/WT fetal LMPPs (x-axis)
and in the secretome of KOPN-8 cells treated with/without IGF2 (y-axis). Red color mark proteins involved in the neutrophil degranulation
pathway and the bold borders represent proteins significantly changed (adjusted p-value < 0.05) between IGF2-treated and control KOPN-8
cells. Mouse and human proteins were mapped by their gene names. See also Figs. S10 and S11 and Tables S7 and S8.
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For the secretome analysis, conditioned media was collected from fetal
LMPP PVA cultures on day 6, and from adult counterparts on day 8. Four
volumes of acetone were added to the collected media to precipitate the
proteins. Samples were diluted in 50mM ammonium bicarbonate and
proteins digested overnight with trypsin.
Phosphopeptide enrichment was performed as described previously [6]

using the Pierce High-Select Fe-NTA Phosphopeptide Enrichment Kit
(Thermo). The unbound fraction and washes (flow-through) from the
enrichment were combined for the corresponding proteome analysis.
LC–MS analyses were carried out on an Orbitrap Exploris 480 MS

instrument equipped with FAIMS Pro and coupled to a reverse phase
UltiMate 3000 UHPLC system (all Thermo Fisher Scientific). For TMTpro
labeled peptides, data acquisition was carried out in data-dependent
mode, and EFs, secretome, phospho-enriched, and phospho-unbound
(flow-through/proteome) samples were analyzed by data-independent
acquisition (DIA).

MS raw data processing, protein identification, and statistical
analysis
The MS raw files from the TMTpro experiment were searched in Proteome
Discoverer (version 2.5, Thermo Scientific). The false discovery rate for
peptide-spectrum matches (PSMs) was set to 0.01 using the Percolator
node. The MS data of the single‐shot EF samples, secretome, proteome,
and phospho-proteome of human cell lines were searched with ‘directDIA’
in Spectronaut (version 17 and 18, Biognosys AG). The Q‐value thresholds
were set to 0.01 at PSM, peptide, and protein levels.
Statistical analysis of the TMTpro quantification was performed using

MSStatsTMT (version 2.4.1) [74] in R. Differential expression analysis was
performed using moderated t-tests with Benjamini–Hochberg (BH) multi-
ple hypothesis correction. Proteins with adjusted p-value less than 0.05
between MLL::ENL and WT in fetal or adult were considered as differentially
expressed. For the EF and secretome DIA data, statistical analysis was
performed with MSstats (version 4.4.1 and 4.8.7) [75] using a linear mixed-
effect statistical model. The phospho-enriched and phospho-unbound cell
line data were statistically analyzed with MSStatsPTM (version 2.4.1) [76]
using separate linear mixed-effect statistical model. The BH method was
used to account for multiple testing. Differentially expressed proteins were
selected with adjusted p-value less than 0.001 and a fold change of more
than 2 between FLEF and BMEF, adjusted p-value < 0.05 for the secretome,
and adjusted p-value < 0.05 and a fold change of more than 1.5 for the
phospho-proteome analysis.

Statistical analysis
For all other experiments, differences between groups were assessed by
two-tailed Students’ t-test (two groups) or one-way ANOVA with Tukey’s
post hoc test (three or more groups) using Prism software version 9
(GraphPad). Error bars represent SD. ****p < 0.0001, ***p < 0.001, **p < 0.01,
and *p < 0.05 and ns not significant. The exact sample size for each
experimental group/condition is stated in the figure legends. Samples sizes
were predetermined heuristically.

DATA AVAILABILITY
The mass spectrometry proteomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository with the dataset identifiers
PXD042249, PXD042251, PXD049014, and PXD049016.
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