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DELE1 haploinsufficiency causes resistance to mitochondrial
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Monosomy 5 and deletions of the chromosome 5q (−5/del(5q)) are recurrent events in de novo adult acute myeloid leukemia
(AML), reaching up to 40% of cases in secondary AML. These chromosome anomalies are associated with TP53 mutations and with
very poor prognosis. Using the large Leucegene genomic and transcriptomic dataset composed of 48 −5/del(5q) patient specimens
and 367 control AML, we identified DELE1 – located in the common deleted region – as the most consistently downregulated gene
in these leukemias. DELE1 encodes a mitochondrial protein recently characterized as the relay of mitochondrial stress to the cytosol
through a newly defined OMA1-DELE1-HRI pathway which ultimately leads to the activation of ATF4, the master transcription factor
of the integrated stress response. Here, we showed that the partial loss of DELE1 expression observed in −5/del(5q) patients was
sufficient to significantly reduce the sensitivity to mitochondrial stress in AML cells. Overall, our results suggest that DELE1
haploinsufficiency could represent a new driver mechanism in −5/del(5q) AML.
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INTRODUCTION
Monosomy 5 and deletions of the chromosome 5q (−5/del(5q))
are recurrent chromosomal abnormalities detected in about 5% of
de novo adult acute myeloid leukemia (AML) and up to 40% in
secondary AML [1]. −5/del(5q) alterations are enriched in complex
karyotype (CK) AML and are associated with a high incidence of
TP53 mutations [2]. In contrast to myelodysplastic neoplasms
(MDS), presenting low blasts and isolated 5q deletion (MDS-5q)
associated with a good prognosis [3, 4], −5/del(5q) AML show low
rates of complete remission, a high relapse occurrence and an
adverse genetic risk in the 2022 European LeukemiaNet recom-
mendations for AML [5].
Even though several candidate haploinsufficient genes (e.g.

EGR1, APC, CTNNA1, CDC25C, CSNK1A1) located in or out of the
common deleted region (CDR) have been proposed [6–9], the
contributing genetic events leading to this poor outcome remain
unclear.
Here, using whole genome sequencing (WGS) combined with

comparative transcriptomic approaches on the Leucegene cohort
(https://data.leucegene.iric.ca/), we identified DELE1 (Death Ligand
Signal Enhancer) – located in the CDR and coding for a protein
associated with the inner mitochondrial membrane – as the most
consistently under-expressed gene in −5/del(5q) AML, over other

currently known culprits. We show that AML cells presenting a
partial loss of DELE1 expression fail to activate the newly defined
OMA1-DELE1-HRI pathway [10, 11] and downstream ATF4
signaling, resulting in a resistance to mitochondrial stress-
induced apoptosis, and suggesting DELE1 as a new haploinsuffi-
cient driver gene that may contribute to −5/del(5q) AML
phenotype.

MATERIAL AND METHODS
Primary AML specimens
The Leucegene project is an initiative approved by the Research Ethics
Boards of Université de Montréal and Maisonneuve-Rosemont Hospital.
Leucegene AML samples (−5/del(5q): n= 48; control AML: n= 367, of which
27 were CK AML with no deletion of chromosome 5) were collected between
2001 and 2015 and characterized by the Banque de cellules leucémiques du
Québec (BCLQ) after obtaining an institutional Research Ethics
Board–approved protocol with informed consent according to the Declara-
tion of Helsinki. The Quebec Leukemia Cell Bank is a biobank certified by the
Canadian Tissue Repository Network. Detailed information on the cohort was
previously published (see https://leucegene.ca/ and Moison et al. [12]).
Cytogenetic aberrations and composite karyotypes were described accord-
ing to the International System for Human Cytogenomic Nomenclature 2020
guidelines [13]. Complex karyotype (CK) was defined as having 3 or more
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chromosomal abnormalities in the absence of one of the WHO-designated
recurring alterations: t(8;21), inv(16) or t(16;16), t(9;11), t(v;11)(v;q23.3), t(6;9),
inv(3) or t(3;3) and t(9;22) [14].

Low-pass (low coverage) whole genome sequencing and data
analysis
Tumor and normal (when available) gDNAs were sequenced on
NovaSeq6000 S4 (paired-end 150 bp). Alignment to GRCh38 was done
using the BWA aligner (v0.7.12) [15], PCR duplicates were marked using
Picard [16] and a GATK (v4.1.0) [17] base quality score recalibration was
applied. A mean depth coverage ~5X was reached for each sample.
Identification of regions of genomic gains and losses was done using FREE-
Copy number caller (FREEC, v11.5) [18]. The optimization of algorithm
parameters (breakPointThreshold = 1.4, window = 100,000, step = 13,000,
readCountThreshold = 20, contaminationAdjustment = “TRUE”, minMapp-
abilityPerWindow = 0.95, breakPointType = 4, minCNAlength = 1) was
conducted using known alterations as reference. The concatenation of
adjacent CNVs was done using the merge option of Bedtools (v2.25.0) [19].

RNA sequencing and data analysis
Leucegene RNAseq libraries were constructed according to TruSeq
Protocols (Illumina) and sequencing was performed using an Illumina
HiSeq 2000/4000 instrument. Pseudo-alignment and quantification of
transcripts were done using Kallisto (v0.46.0) [20] with hg38 transcriptome
as reference. The Tximport R package [21] was used to obtain a per gene
quantification. The limma package and its Voom method [22] was used to
conduct differential expression analysis. Point mutations were identified
from RNAseq data as previously described [12]. MCC (Matthews Correlation
Coefficient) values reported in the Table S4 were calculated using EPCY
[https://github.com/iric-soft/epcy, v0.0.1] on expression data (TPM), com-
paring −5/del(5q) AML to other AML from the Leucegene cohort.

Cell line culture
OCI-AML1 and OCI-AML5 cell lines were purchased from ATCC and
maintained in alpha-MEM, 10% heat-inactivated FBS, and 10 ng/ml GM-CSF
(Shenandoah). HL60 and K562 were cultured in RPMI1640 and 10% heat-
inactivated FBS. HEK293, HeLa and HCT116 cell lines were cultured in
DMEM supplemented with 10% heat-inactivated FBS. All cell lines were
grown in humidified incubators at 37oC and 5% CO2.

Human cord blood cell collection and processing
This study was approved by the Research Ethics Boards of Université de
Montréal and Charles LeMoyne Hospital (Greenfield Park, QC, Canada). All
umbilical cord blood units were collected from consenting mothers at the
Charles LeMoyne Hospital (Greenfield Park, QC, Canada). Human CD34+
cord blood (CB) cells were isolated using The EasySep™ positive selection
kit (StemCell Technologies Cat #18056). CB cells were cultured in
expansion media consisting of StemSpan SFEM (StemCell Technologies)
supplemented with human 100 ng/ml stem cell factor (SCF, R&D Systems),
100 ng/ml FMS-like tyrosine kinase 3 ligand (FLT3, R&D Systems) and
50 ng/ml thrombopoietin (TPO, R&D Systems).

Plasmids and gene transfer
Lentiviral vectors carrying shRNAs (shDELE1) were generated by cloning
appropriate shRNA sequences as described in (Fellmann et al. [23]) into
MNDU vectors comprising miR-E sequences as well as GFP. shRNAs
targeting Renilla luciferase were used as control (shLuc). Guide sequences
are as follow: shDELE1#1: TTTTGATTTATCTTGTTCCTTT; shDELE1#2: TCTCA-
TAGCAAATTCCAAGGTG. Lentiviral vectors carrying AFTF4 translational
reporter (ATF4 reporter followed by mApple fluorescent protein) were
purchased from Addgene (#141281). Lentiviruses were produced in HEK-
293 cells and AML cell lines or primary CD34+ cells were infected with
lentiviruses in media supplemented with 10 ng/mL polybrene for 24 h.
Infection efficiency, as determined by the percentage of GFP positive cells,
was monitored by flow cytometry using a BD FACSCantoII flow cytometer.
When needed, infected cells were sorted using a BD Aria II cell sorter and
knockdown efficiency was determined by Q-PCR using standard methods.

Chemicals
Oligomycin A (Sigma-Aldrich, #75351), Thapsigargin (Sigma-Aldrich,
#T9033), CCCP (Sigma-Aldrich, #C2920) and cytarabine (Tocris, #4520)
were used as indicated in figures.

Dose responses and treatments
AML cell lines were plated in 384-well plates, 300 cells per well in 50 μL.
Oligomycin was dissolved in DMSO and added to seeded cells in serial
dilution (8 dilutions, 1:4, 500 nM down to 0.025 nM). Cell viability was
evaluated after 4 days in culture using the CellTiterGlo assay (Promega)
according to the manufacturer’s instruction. Percentage of inhibition for dose
response curves was calculated as 100 – (100 x (mean luminescence
[compound]/mean luminescence [DMSO])), IC50 values are reported in figure.
Cord blood cells were seeded in 48-well plates and exposed to 250 or 500 nM
of oligomycin for 72 h. Viability and percentage of GFP-positive cells was
determined by flow cytometry and compared to DMSO-treated cord blood
cells. AML cell lines-engineered to express shRNAs and/or ATF4 reporter were
exposed to DMSO or CCCP (5, 10 or 20 uM) for the indicated time.

Western blot analysis
Total protein extraction was performed in RIPA lysis buffer (20mM Tris-HCl
pH7.4, 150 mM NaCl, 5 mM MgCl2, 5 mM EGTA, 60mM β-glyceropho-
sphate, 0.1% NP40, 0.1% Triton X-114, 1 mM DTT) supplemented with
protease and kinase inhibitors (PMFS Sigma P-7626, Aprotinin Sigma A-
1153, Leupeptin Sigma L-2884, Glycerophosphate, Na2VO4, NaF), and
quantified by the bicinchoninic acid (BCA) method using BSA for standard
curve. Proteins were resolved by SDS-PAGE, transferred onto PVDF
membrane, blocked with 5% milk and probed with primary (overnight,
4 C) and secondary (1 h, room temperature) antibodies. Primary antibodies:
EIF2 (Cell Signaling Technology 9722), pEIF2 (Cell Signaling Technology
3597), OPA1 (BD Biosciences 612606), DDIT3 (Cell Signaling Technology
2895 S), OMA1 (ProteinTech Group 17116-1-AP) and alpha-tubulin (Cell
Signaling Technology 2144 S). Secondary antibodies: anti-mouse HRP
(Jackson ImmunoResearch 115-035-146) and anti-rabbit HRP (Jackson
ImmunoResearch 111-035-144).

7AAD assays
HEK293, HeLa and HCT116 cell lines were transfected with 10 µg DNA
(DELE1 (Plasmid #141283) or EGFP (CTRL)) using JetPrime reagent
following the manufacturer’s recommended protocol (PolyPlus). Cell death
was assessed 48 h after transfection using 7AAD dye (BioLegend).

Statistical analysis
Statistical analyses of all experiments were done using R. Depending on
the dataset, Fisher’s Exact test or Mann–Whitney test were used to
determine significance (p-value < 0.05).

RESULTS
Cytogenetics data were used to initially define the −5/del(5q)
cohort (n= 48 AML with a clonal 5/5q deletion, of which 41
belonged to the CK subgroup, see Table 1 for clinical character-
istics) in a cohort composed of a total of 415 AMLs (other
specimens being subsequently used as controls, n= 367).
Complementarily, low-pass WGS data (available for n= 42 −5/
del(5q) specimens, Methods) allowed us to refine 5q deletion and
CDR boundaries. Using these data, we identified 40 patients
carrying large deletions of chromosome 5 – from 23.2 Mb to
177.8 Mb – while two cases presented a complete loss of the
chromosome (overall median size of 98.2 Mb). The calculation of
the median log-2 copy number ratio along chromosome 5
revealed a global minimum value of −0.99 for a region extending
from 5q31.1 to 5q31.3 cytobands corresponding to the previously
reported CDR [24] (blue shade in Fig. 1A, Fig. S1) which includes
known candidate haploinsufficient genes such as CDC25C, EGR1
and CTNNA1 [6–8].

Genetic alterations of TP53 are associated with larger
deletions of chromosome 5
Consistent with previous reports, TP53 was the most frequently
mutated gene in −5/del(5q) patients (37 mutations in 35
specimens) [2] and presented an excess of mutations in the −5/
del(5q) cohort when compared to other AML or to CK AML
without −5/del(5q) (p < 1e–04 and p < 0.001, respectively; Fig. 1B
and Table S1), suggesting a cooperative effect with the deletion.
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As reported in a previous Leucegene study on CK AML [12],
more than 80% (30/37) of TP53 mutations presented a variant
allele frequency (VAF) > 0.75 (Fig. S2 and Table S1), reflecting the
predominant expression of the mutated allele. Using WGS data,
we completed fluorescent in situ hybridization (FISH) experiments
targeting TP53 on chromosome 17p, allowing the identification of
deletions including TP53 in a group of 26 cases enriched for point
mutations in the gene (22/26, p= 0.06; see del(17p) track in
Fig. 1B and Table S1) and explaining the majority of unbalanced
expressions; remaining high VAF TP53 mutations without identi-
fied 17p deletion probably being due to copy neutral loss of
heterozygosity (cnLOH) events which are not detectable from low-
pass WGS data. Overall, more than 80% of −5/del(5q) specimens
harbored an alteration of TP53 (mutation and/or deletion, n= 39/
48; Fig. 1B and Table S1).
Corroborating previous studies [24, 25], lesions of chromosome

17p were significantly associated with larger deletions of
chromosome 5 (p < 0.001; Fig. 1C), which remained true consider-
ing TP53 mutations only (p < 0.01; Fig. 1C). This is in line with the
hypothesis that larger lesions involving genomic regions distant
from 5q CDR could include genes for which the loss of copy
cooperates with alterations of TP53 [25].

DELE1 is the most consistently downregulated gene in −5/
del(5q) AML
Differential expression analysis of −5/del(5q) AML was conducted
using other AML from the Leucegene cohort as controls or
complex karyotype AML without −5/del(5q) (Fig. 2A, Tables S2
and S3). While a trend existed between expression and the
estimated copy number of 5q genes (Pearson’s r= 0.35; Fig. S3),
previously identified haploinsufficient candidates, such as CDC25C
and CTNNA1, showed a limited to no drop of expression when
compared to other AML (logFC=−0.06 and −0.8, respectively) or
to CK AML (logFC = 0.1 and −0.6, respectively; Fig. 2A, Fig. S4A, B).
As for EGR1, expression levels were highly variable across −5/
del(5q) specimens (σ2(log2(TPM+ 1)) = 1.40) leading to a
decrease of its significance (Fig. 2A, Fig. S4C). Overall, the loss of
copy of these genes rather showed a case-specific expression
footprint with several specimens presenting control-like levels – as
evidenced by their MCC (Matthews Correlation Coefficient) values:
0.22, 0.04, and 0.33 for EGR1, CDC25C and CTNNA1, respectively
(Table S4, Supplemental Methods) – despite low copy number
ratios (Fig. S4).
On the other hand, our analysis identified DELE1, located in the

CDR downstream of the other candidates (Fig. 1A), as the most
consistently down-expressed gene (logFC=−1.2, FDR= 7.3e–75,
σ2(log2(TPM+ 1))= 0.32 and top 1 MCC value= 0.77; Fig. 2A, B,
Table S4), making it an interesting new candidate for haploinsuf-
ficiency. Importantly, DELE1 was also the most significantly
downregulated gene when CK AML were used as controls
(logFC=−1.1, FDR= 1.2e–13; Fig. 2A).

DELE1 down-expression reduces AML cells sensitivity to
mitochondrial stress
Poorly characterized until recently, only a sparse literature is
available for DELE1 which was originally described as mediating
the death receptor-induced apoptosis [26]. In 2020, two major
studies reported a new role for DELE1 as a relay of mitochondrial
stress to the cytosol [10, 11] (Fig. 3A). Once cleaved by OMA1
(located on the inner mitochondrial membrane), the short form of
DELE1 (DELE1S) accumulates in the cytosol and binds HRI
(EIF2AK1), leading to its activation and inducing eIF2a phosphor-
ylation, which promotes the transfer of the integrated stress
response (ISR) master transcriptional regulator ATF4 to the
nucleus. This ultimately leads to the upregulation of pro-
apoptotic proteins such as DDIT3 (CHOP), while slowing down
the general protein synthesis process, including the production of
anti-apoptotic proteins such as MCL1.

In this context, to determine if a partial loss of DELE1 expression
could modulate the response to mitochondrial stress in AML, we
tested the sensitivity of three knockdown leukemia cell lines –
virtually presenting the expression drop observed in −5/del(5q)
specimens (shRNA-mediated DELE1-KD OCI-AML1, OCI-AML5 and
K562, Fig. S5) – to three compounds: oligomycin, (inhibitor of ATP
synthase used by Guo et al. to trigger the ISR in their recent DELE1
characterization [11]), cytarabine (inhibitor of DNA polymerase
activity widely used as chemotherapy drug in AML), thapsigargin
(inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase), and
showed that three out of three cell lines presented a specific and
significant resistance to oligomycin-induced apoptosis (Fig. 3B, C,
Fig. S6), indeed suggesting a modulation of the OMA1–DELE1–HRI
pathway.
Despite the lack of effective antibodies targeting DELE1 (as

already reported by Guo et al. [11]), immunoblotting quantifica-
tion of different factors of the pathway in OCI-AML1 (TP53-WT)
and HL60 (TP53-null) AML cells upon 4 and 24 h CCCP exposure –
a mitochondrial ionophore used as an alternative ISR-inducing
drug by Fessler et al. for DELE1 characterization [10] – showed that
a downregulation of DELE1 gene expression was sufficient to
prevent OMA1–DELE1–HRI pathway induction in both cell lines in
a TP53-independent manner (Fig. 3D, Fig. S5). In line with
previously published assays [26], the transient overexpression of
DELE1 impaired survival in all tested cell lines (Fig. S7).
To specifically monitor ATF4 induction in response to mito-

chondrial stress in DELE1-knockdown cells, we conducted an
ATF4-reporter assay in HL60 cells expressing a GFP-coupled-
shRNA against DELE1 and challenged them with CCCP (Fig. 4A).
While increasing ATF4 induction levels matching increasing doses

Table 1. Clinical characteristics of −5/del(5q) AML.

−5/del(5q)
(n= 48)

other
(n= 367)

P-value

Age 65 (37–87) 57 (17–87) <1e–3a

WBC (x109/L) 11.5 (0.8–321) 35.8 (0.8–447) <1e–4a

Gender

Female 21 (43.7%) 159 (43.3%) —

Male 27 (56.2%) 208 (56.7%) —

Cytogenetic risk

Adverse 48 (100%) 74 (20.1%) <1e–4b

Intermediate 0 (0%) 230 (62.7%) —

Favorable 0 (0%) 63 (17.2%) —

Cytogenetic group

CK 41 (85.4%) 27 (7.4%) <1e–4b

FAB

M0 8 (16.7%) 19 (5.2%) <0.01b

M1 7 (14.6%) 109 (29.7%) <0.05b

M2 7 (14.6%) 45 (12.3%) —

M3 0 (0%) 15 (4.1%) —

M4 2 (4.2%) 54 (14.7%) —

M5 1 (2.1%) 65 (17.7%) —

M6 5 (10.4%) 5 (1.4%) —

M7 1 (2.1%) 2 (0.5%) —

NC 17 (35.4%) 53 (14.4%) —

The “other” cohort is constituted of AML cases from diverse cytogenetic
subgroups composing the Leucegene cohort.
WBC white blood cell count, CK complex karyotype, FAB French-American-
British.
aMann–Whitney test.
bFisher’s exact test.
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of CCCP exposure were observed in GFP negative cells (DELE1-WT)
and controls, cells expressing the shRNA (GFP+ cells, DELE1-KD)
showed a limited activation of ATF4 (Fig. 4B, Fig. S8) coupled with
increasing proportions of live cells (Fig. 4C), even at the higher

dose of CCPP (20 µM), confirming the reduced ability of DELE1-KD
cells to induce OMA1–DELE1–HRI pathway and suggesting a
protective role of DELE1 downregulation during mitochondrial
stress.

Fig. 1 5q common deleted region and mutation landscape of −5/del(5q) AML. A Median log-2 copy number ratio (log-2 ratio) calculated
for windows of 13 Kb (depicted by gray dots; each dot represents the median value obtained for the whole −5/del(5q) WGS cohort for a
specific window) covering chromosome 5 (genomic position and schematic representation of chromosome 5 are indicated along the x-axis).
Gray and red squares on the schematic representation of chromosome 5 depict cytobands and the centromere, respectively. The horizontal
dashed black line marks a log-2 ratio of 0 corresponding to a normal diploid state. Black solid segments represent the median log-2 ratio
calculated for overlapping windows of 10 Mb (overlap = 2.5 Mb). The vertical blue zone delimits the CDR (5q31.1 to 5q31.3). The position of
genes of interest are indicated by black diamonds. B Mutations heatmap of −5/del(5q) AML. Genes (y-axis) composing the heatmap were
either mutated in one or more −5/del(5q) specimens (x-axis). NPM1 was conserved because its wild-type status was significantly associated
with −5/del(5q) AML compared to other AML or to complex karyotype (CK) AML without −5/del(5q). Genes were ordered (from top to
bottom) based on their mutation frequencies (indicated by the red bar graph on the left). Specimens were grouped according to their
mutation status (from left to right). Specimens presenting a deletion of the chromosome 17p (del(17p)) spanning TP53 (identified by FISH and/
or WGS) or a complex karyotype (CK) are flagged by gray cells at the top of the heatmap. Mutation types (compound heterozygous or other
mutations) are depicted by dark and light blue cells in the heatmap, as indicated in the legend at the bottom of the heatmap. Significant
associations or anti-associations (depicted by a (+) and a (−), respectively) compared to other AML or to complex karyotype (CK) AML without
−5/del(5q) (as indicated at the bottom right of the heatmap) are shown for concerned genes (in bold) at the right of the heatmap. *, **, ***
and **** stand for p < 0.05, p < 0.01, p < 0.001 and p < 1e-04, respectively. C Size of chromosome 5 deletions for patients with or without lesions
of chromosome 17p. Median values are indicated by red lines. As indicated by the legend, diamonds depict patients with a combined deletion
of the chromosome 17p (del(17p)) and a mutation of TP53 (TP53m), triangles depict TP53m without del(17p) and dots depict del(17p) without
TP53m. Squares represent patients without lesions of the 17p (indicated as “other” on the x-axis). Blue symbols represent −5/del(5q)
specimens presenting a complex karyotype (CK). P-values resulting from the tests comparing each group to the “other” AML are directly
indicated on the figure.
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Accordingly, DELE1 shRNA-mediated downregulation in human
cord blood cells (Fig. 4D) also significantly reduced the sensitivity
to oligomycin-mediated mitochondrial stress (Fig. 4E). The
observed enrichment in GFP+ DELE1-KD cord blood cells
confirmed the protective effect of DELE1 downexpression.

DISCUSSION
In this study, we characterized 415 primary AML specimens of the
Leucegene collection by whole genome and transcriptome
sequencing, of which 48 presented deletions corresponding to
−5/del(5q) AML.
To date, several candidate haploinsufficient genes (e.g. EGR1,

APC, CTNNA1, CDC25C, CSNK1A1) located in or out of 5q CDR have
been studied [6–9]. Modification of CTNNA1 expression was shown
to modulate apoptosis and proliferation in cell lines [7], while
CDC25C was reported as recurrently mutated in familial platelet
disorders with predisposition to acute myelogenous leukemia
(FPD/AML) [27] and its dosage demonstrated as influencing the
sensitivity to Lenalidomide in del(5q) MDS [28]. More recently,
CSNK1A1 haploinsufficiency was shown to give an advantage to
hematopoietic stem cells when compared to haploinsufficient APC
or EGR1 in a chronic inflammatory context [9].
Furthermore, given the size of the CDR carrying multiple ORFs, a

phenotype depending on several contributing genes cannot be
ruled out and few models involving combined alterations of two
candidates, such as APC and EGR1 in a TP53-null context, have
been successfully tested in vivo [6]. While this work confirmed that
a cooperative effect of haploinsufficiencies could be at play in −5/
del(5q) AML, the combination of contributing events leading to
the poor outcome associated with −5/del(5q) AML remains
unclear.
While several putative haploinsufficient candidates also

located in the CDR have been disregarded – possibly because
of a lack of existing characterization for some of these genes – in
our data none of the previously reported 5q genes fully matched
criteria to be considered as “haploinsufficient candidate”, for
they either showed a limited to no drop of expression in −5/
del(5q) patients or highly variable expression levels across

specimens. However, our approach identified DELE1 – also
located on chromosome 5q but unreported yet in this context –
as the most significantly under-expressed gene in Leucegene
−5/del(5q) AML.
In 2010, Harada et al. showed that DELE1 binds to the GTP-

binding protein DAP3, known to play the role of adapter between
TRAIL receptors and FADD, and demonstrated that a variation of
DELE1 expression modulates apoptosis [26]. More recently, DELE1
has been demonstrated as the missing link between mitochon-
drial stress and ATF4 induction [10, 11, 29] of a mito-nuclear
retrograde response, acting via a newly defined OMA1-DELE1-HRI
pathway, and ultimately leading to the BAX/BAK-dependent
release of cytochrome C and to caspase activation.
Here, we showed that only a partial loss of expression of DELE1

– mimicking the decreased expression level identified in −5/
del(5q) AML – was sufficient to provoke a protective effect from
ISR. This study, combined with the growing importance of DELE1
mitochondrial stress relaying function, strongly suggests that its
haploinsufficiency should be considered as a new driver candidate
participating in −5/del(5q) AML phenotype.
Of note, despite significant enrichment of TP53 loss of function

in −5/del(5q) AML, our experimental data failed to identify a
cooperative association between DELE1 haploinsufficiency and
TP53 alterations. Additionally, considering the association between
TP53 mutations and Venetoclax resistance [30], and given that
ATF4 mediates the transactivation of the MCL-1 antagonist NOXA
[31], we checked the impact of DELE1 expression (+/- TP53
mutations) on Venetoclax response using both Leucegene and
BEAT AML data [32], but again did not identify any collaborative
effect (Figs. S9 and S10).
Nonetheless, as advocated by recent studies on DELE1

characterization [10, 11, 29], the influence of its pathways on
chemotherapeutic treatments of other tumor types [33], and given
the advantage of cells able to cope with mitochondrial perturba-
tion through modification of OMA1-DELE1-HRI signaling, a
modulation of this pathway could represent an attractive
therapeutic avenue worthing further investigations, especially in
the −5/del(5q) AML context which represents a major challenge in
terms of clinical management.

Fig. 2 DELE1 is the most consistently downregulated gene in −5/del(5q) AML. A Volcano plot representation of the differential expression
analysis conducted on RNAseq data comparing −5/del(5q) AML samples (n= 48) versus (left panel) other AML (n= 367) or (right panel)
complex karyotype (CK) AML without −5/del(5q) (n= 27) as control. The horizontal dashed line indicates an adjusted p-value of 0.01 and
vertical dashed lines indicate log fold change (logFC) of 1 and -1. Red and blue dots correspond to genes significantly over- and under-
expressed (logFC > |1|, FDR < 0.01), respectively. Diamonds depict genes significantly downregulated and located on the chromosome 5q.
B Dotplot representation (left panel) and density curves (right panel) of DELE1 expression in the −5/del(5q) cohort (n= 48, in blue), CK
specimens without −5/del(5q) (n= 27, in gray) and other AML (n= 340, in black). Median values are indicated by red lines on each dotplot.
Adjusted p-values resulting from the differential expression analysis are directly indicated on the figure. The color code for the −5/del(5q)
group is representative of the median log-2 copy number ratio (log-2 ratio) calculated for the genomic region of DELE1 (window centered on
the gene and extended for 25 kb on each side).
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Fig. 3 DELE1 down-expression modulates OMA1–DELE1–HRI pathway. A Schematic representation of the OMA1-DELE1-HRI pathway
recently defined by Fessler et al. [10] and Guo et al. [11]. S and L suffixes indicate short and long forms of OPA1 and DELE1. IMM: inner
mitochondrial membrane, OMM: outer mitochondrial membrane. B Radar plot summary representation of the significance of sensitivity
reduction to oligomycin, cytarabine and thapsigargin (-log10(P-values), Mann-Whitney tests on IC50 values) for OCI-AML-1, OCI-AML-5 and
K562 cells (see legend) expressing shRNA vectors targeting DELE1 (shDELE1#1 and shDELE1#2) or the luciferase as control (shLuc).
C Oligomycin IC50 values (log10 of concentrations in nM of the compound that inhibited cell growth by 50%) for OCI-AML-1, OCI-AML-5
and K562 cells expressing shDELE1 (shDELE1#1 and shDELE1#2) or shLuc. P-values resulting from Mann-Whitney tests comparing
shDELE1#1 and/or shDELE1#2 vs. shLuc conditions are directly indicated on the figure. D Western blot analysis of total proteins extracted
from OCI-AML1 (left panel) and HL60 cells (right panel) expressing shDELE1#1 or shLuc (control) and exposed to DMSO or CCCP (20 µM)
for 4 and 24 h (hrs). Representative blot showing OPA1, OMA1, DDIT3, eIF2a, (P)eIF2a and TUBULIN as loading control.

Fig. 4 DELE1 down-expression reduces the sensitivity to mitochondrial stress. A Schematic representation of the ATF4 reporter assay in
HL60 cells (quantification using flow cytometry). B ATF4 induction (% mApple) in the GFP-negative and -positive fractions of HL60 cells
expressing shLuc (control), shDELE1 (shDELE1#1 and shDELE1#2) and exposed to DMSO or 5, 10 and 20 µM of CCCP for 24 h (n= 3 per
shRNA, mean value + standard deviation). P-values resulting from Mann-Whitney tests comparing shDELE1#1 and/or shDELE1#2 vs. shLuc
conditions are directly indicated on the figure. C GFP enrichment in HL60 live cells (GFP ratio, normalized to DMSO) exposed to DMSO or
5, 10 and 20 µM of CCCP for 24 h (n= 3 per shRNA, mean value + standard deviation). P-values resulting from Mann-Whitney tests
comparing shDELE1#1 and/or shDELE1#2 vs. shLuc conditions are directly indicated on the figure. D Schematic representation of the GFP-
coupled shDELE1 monitoring assay in cord blood CD34+ cells. E Enrichment in GFP-positive cord blood cells (fold change of % GFP+ cells
normalized to DMSO, left panel) and in viable cells (fold change of live cells normalized to DMSO, right panel) expressing shDELE1
(shDELE1#1 and shDELE1#2) or shLuc (control) exposed to DMSO or 250 and 500 nM of oligomycin for 72 h (n= 3 per shRNA, mean value
+ standard deviation). P-values resulting from Mann-Whitney tests comparing shDELE1#1 and/or shDELE1#2 vs. shLuc conditions are
directly indicated on the figure.
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