Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

The novel lncRNA BlackMamba controls the neoplastic phenotype of ALK anaplastic large cell lymphoma by regulating the DNA helicase HELLS

Abstract

The molecular mechanisms leading to the transformation of anaplastic lymphoma kinase negative (ALK) anaplastic large cell lymphoma (ALCL) have been only in part elucidated. To identify new culprits which promote and drive ALCL, we performed a total transcriptome sequencing and discovered 1208 previously unknown intergenic long noncoding RNAs (lncRNAs), including 18 lncRNAs preferentially expressed in ALCL. We selected an unknown lncRNA, BlackMamba, with an ALK ALCL preferential expression, for molecular and functional studies. BlackMamba is a chromatin-associated lncRNA regulated by STAT3 via a canonical transcriptional signaling pathway. Knockdown experiments demonstrated that BlackMamba contributes to the pathogenesis of ALCL regulating cell growth and cell morphology. Mechanistically, BlackMamba interacts with the DNA helicase HELLS controlling its recruitment to the promoter regions of cell-architecture-related genes, fostering their expression. Collectively, these findings provide evidence of a previously unknown tumorigenic role of STAT3 via a lncRNA-DNA helicase axis and reveal an undiscovered role for lncRNA in the maintenance of the neoplastic phenotype of ALKALCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALCL samples expressed a restricted set of aberrantly activated previously unknown lncRNAs.
Fig. 2: BlackMamba is a previously unknown long noncoding RNA in ALK ALCL subset.
Fig. 3: STAT3 regulates BlackMamba expression.
Fig. 4: Loss of BlackMamba leads to impaired cell proliferation and clonogenicity of ALK ALCL cells.
Fig. 5: BlackMamba regulates the lymphoid-specific helicase HELLS.
Fig. 6: BlackMamba controls the recruitment of HELLS on multiple target promoters.
Fig. 7: Silencing of HELLS mimics BlackMamba silencing phenotype.

Similar content being viewed by others

Data availability

BlackMamba sequence has been deposited in GenBank database with the accession number MN902222.

References

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126:17–25.

    Article  CAS  PubMed  Google Scholar 

  3. Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parrilla Castellar ER, Jaffe ES, Said JW, Swerdlow SH, Ketterling RP, Knudson RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124:1473–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85:206–15.

    Article  PubMed  Google Scholar 

  6. Agnelli L, Mereu E, Pellegrino E, Limongi T, Kwee I, Bergaggio E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 2012;120:1274–81.

    Article  CAS  PubMed  Google Scholar 

  7. Pizzi M, Gaudiano M, Todaro M, Inghirami G. Anaplastic lymphoma kinase: activating mechanisms and signaling pathways. Front Biosci. 2015;7:283–305.

    Article  Google Scholar 

  8. Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111:5496–504.

  9. Boi M, Rinaldi A, Kwee I, Bonetti P, Todaro M, Tabbo F, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood. 2013;122:2683–93.

    Article  CAS  PubMed  Google Scholar 

  10. Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123:2915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scarfo I, Pellegrino E, Mereu E, Kwee I, Agnelli L, Bergaggio E, et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127:221–32.

    Article  CAS  PubMed  Google Scholar 

  12. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11:623–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, et al. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 2017;16:136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37:4094–109.

    Article  CAS  PubMed  Google Scholar 

  15. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018 ;172:393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aune TM, Crooke PS,III, Spurlock CF 3rd. Long noncoding RNAs in T lymphocytes. J Leukoc Biol. 2016;99:31–44.

    Article  CAS  PubMed  Google Scholar 

  18. Casero D, Sandoval S, Seet CS, Scholes J, Zhu Y, Ha VL, et al. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nat Immunol. 2015;16:1282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ranzani V, Rossetti G, Panzeri I, Arrigoni A, Bonnal RJ, Curti S, et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol. 2015;16:318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J Immunol. 2014;193:3959–65.

    Article  CAS  PubMed  Google Scholar 

  21. Spurlock CF III, Tossberg JT, Guo Y, Collier SP, Crooke PS III, Aune TM. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun. 2015;6:6932.

    Article  CAS  PubMed  Google Scholar 

  22. Koh BH, Hwang SS, Kim JY, Lee W, Kang MJ, Lee CG, et al. Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proc Natl Acad Sci USA. 2010;107:10614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Kucuk C. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol. 2017;39:1010428317701648.

    Article  PubMed  CAS  Google Scholar 

  24. Chung IH, Lu PH, Lin YH, Tsai MM, Lin YW, Yeh CT, et al. The long non-coding RNA LINC01013 enhances invasion of human anaplastic large-cell lymphoma. Sci Rep. 2017;7:295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Huang PS, Chung IH, Lin YH, Lin TK, Chen WJ, Lin KH. The Long non coding RNA MIR503HG enhances proliferation of human ALK-negative anaplastic large-cell lymphoma. Int J Mol Sci. 2018; 19:1463.

  26. Fragliasso V, Chiodo Y, Ferrari-Amorotti G, Soliera AR, Manzotti G, Cattelani S, et al. Phosphorylation of serine 21 modulates the proliferation inhibitory more than the differentiation inducing effects of C/EBPalpha in K562 cells. J Cell Biochem. 2012;113:1704–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sancisi V, Manzotti G, Gugnoni M, Rossi T, Gandolfi G, Gobbi G, et al. RUNX2 expression in thyroid and breast cancer requires the cooperation of three non-redundant enhancers under the control of BRD4 and c-JUN. Nucleic Acids Res. 2017;45:11249–67.

  28. Gugnoni M, Sancisi V, Gandolfi G, Manzotti G, Ragazzi M, Giordano D, et al. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene. 2016;36:667.

    Article  PubMed  CAS  Google Scholar 

  29. Verma A, Jiang Y, Du W, Fairchild L, Melnick A, Elemento O. Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma. Genome Med. 2015;7:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fededa JP, Gerlich DW. Molecular control of animal cell cytokinesis. Nat Cell Biol. 2012;14:440–7.

    Article  CAS  PubMed  Google Scholar 

  31. Herriges MJ, Swarr DT, Morley MP, Rathi KS, Peng T, Stewart KM, et al. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev. 2014;28:1363–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werner MS, Sullivan MA, Shah RN, Nadadur RD, Grzybowski AT, Galat V, et al. Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat Struct Mol Biol. 2017;24:596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol. 2016;17:756.

    Article  CAS  PubMed  Google Scholar 

  34. Geiman TM, Muegge K. Lsh, an SNF2/helicase family member, is required for proliferation of mature T lymphocytes. Proc Natl Acad Sci USA. 2000;97:4772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tao Y, Liu S, Briones V, Geiman TM, Muegge K. Treatment of breast cancer cells with DNA demethylating agents leads to a release of Pol II stalling at genes with DNA-hypermethylated regions upstream of TSS. Nucleic Acids Res. 2011;39:9508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tao Y, Xi S, Briones V, Muegge K. Lsh mediated RNA polymerase II stalling at HoxC6 and HoxC8 involves DNA methylation. PLoS ONE. 2010;5:e9163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun. 2015;6:7870.

    Article  CAS  PubMed  Google Scholar 

  38. von Eyss B, Maaskola J, Memczak S, Mollmann K, Schuetz A, Loddenkemper C, et al. The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO J. 2012;31:972–85.

    Article  CAS  Google Scholar 

  39. Xi S, Zhu H, Xu H, Schmidtmann A, Geiman TM, Muegge K. Lsh controls Hox gene silencing during development. Proc Natl Acad Sci USA. 2007;104:14366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Orom UA, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell. 2013;154:1190–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang R, Shi Y, Chen L, Jiang Y, Mao C, Yan B, et al. The ratio of FoxA1 to FoxA2 in lung adenocarcinoma is regulated by LncRNA HOTAIR and chromatin remodeling factor LSH. Sci Rep. 2015;5:17826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pizzi M, Margolskee E, Inghirami G. Pathogenesis of Peripheral T Cell Lymphoma. Annu Rev Pathol. 2018;13:293–320.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng Y, Feldman AL. Genetics of anaplastic large cell lymphoma. Leuk Lymphoma. 2016;57:21–27.

    Article  CAS  PubMed  Google Scholar 

  44. Nobili L, Ronchetti D, Taiana E, Neri A. Long non-coding RNAs in B-cell malignancies: a comprehensive overview. Oncotarget. 2017;8:60605–23.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee CS, Ungewickell A, Bhaduri A, Qu K, Webster DE, Armstrong R, et al. Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood. 2012;120:3288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28:1583–90.

    Article  CAS  PubMed  Google Scholar 

  47. Huynh J, Etemadi N, Hollande F, Ernst M, Buchert M. The JAK/STAT3 axis: a comprehensive drug target for solid malignancies. Semin Cancer Biol. 2017;45:13–22.

    Article  CAS  PubMed  Google Scholar 

  48. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21:1038–47.

    Article  CAS  PubMed  Google Scholar 

  49. Rastogi P, Deva AK, Prince HM. Breast Implant-associated anaplastic large cell lymphoma. Curr Hematol Malig Rep. 2018;13:516–24.

    Article  CAS  PubMed  Google Scholar 

  50. Kucuk C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.

    Article  CAS  PubMed  Google Scholar 

  51. Hammaren HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 2019;118:48–63.

  52. Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, et al. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer. 2017;16:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Debidda M, Wang L, Zang H, Poli V, Zheng Y. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation. J Biol Chem. 2005;280:17275–85.

    Article  CAS  PubMed  Google Scholar 

  54. Teng TS, Lin B, Manser E, Ng DC, Cao X. Stat3 promotes directional cell migration by regulating Rac1 activity via its activator betaPIX. J Cell Sci. 2009;122:4150–9.

    Article  CAS  PubMed  Google Scholar 

  55. Lungu C, Muegge K, Jeltsch A, Jurkowska RZ. An ATPase-deficient variant of the SNF2 family member HELLS shows altered dynamics at pericentromeric heterochromatin. J Mol Biol. 2015;427:1903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Han Y, Ren J, Lee E, Xu X, Yu W, Muegge K. Lsh/HELLS regulates self-renewal/proliferation of neural stem/progenitor cells. Sci Rep. 2017;7:1136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhang G, Dong Z, Prager BC, Kim LJ, Wu Q, Gimple RC, et al. Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight. 2019;4:e126140.

  58. He X, Yan B, Liu S, Jia J, Lai W, Xin X, et al. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res. 2016;76:5743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019; 568:511–16.

Download references

Acknowledgements

We thank Dr Alan Epstein, who provided the TLBR-1 and 2 cells lines. We also thank Marina Grassi for technical help and Jacqueline Costa for English editing. This work was funded by the Italian Association for Cancer Research Special Program in Clinical Molecular Oncology, Milan (5 × 1000 No. 10007, GI), 7011-16 SCOR grant from the Leukemia & Lymphoma Society/SCOR grant (GI), by the Ministero della Salute (Ricerca Finalizzata No. GR-2016-02364298, VF), and R35GM122515 (JS). We thank the Epigenetic Core at Weill Cornell Medicine and the Genome Technology Center at New York University and GRADE Onlus Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed as a team to the experimental design and the interpretation of data. VF, AT, GM, and VM performed experiments and data analysis. AV and RB performed bioinformatics analysis. OE supervised bioinformatics analysis. EZ performed FISH staining. GI, JI, TBH, FM, and VF diagnosed and stratified pathological samples. RW and DF performed the sequencing. VF and GI created the pathological and clinical database. PL, WC, and JK contributed to the data analyses. GI, VF, and AC wrote the manuscript.

Corresponding authors

Correspondence to Alessia Ciarrocchi, Oliver Elemento or Giorgio Inghirami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragliasso, V., Verma, A., Manzotti, G. et al. The novel lncRNA BlackMamba controls the neoplastic phenotype of ALK anaplastic large cell lymphoma by regulating the DNA helicase HELLS. Leukemia 34, 2964–2980 (2020). https://doi.org/10.1038/s41375-020-0754-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0754-8

This article is cited by

Search

Quick links