Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

PD-L1/L2 protein levels rapidly increase on monocytes via trogocytosis from tumor cells in classical Hodgkin lymphoma

Abstract

In classical Hodgkin lymphoma (cHL)—characterized by the presence of Hodgkin and Reed-Sternberg (HRS) cells—tumor-associated macrophages (TAMs) play a pivotal role in tumor formation. However, the significance of direct contact between HRS cells and TAMs has not been elucidated. HRS cells and TAMs are known to express PD-L1, which leads to PD-1+ CD4+ T cell exhaustion in cHL. Here, we found that PD-L1/L2 expression was elevated in monocytes co-cultured with HRS cells within 1 h, but not in monocytes cultured with supernatants of HRS cells. Immunofluorescence analysis of PD-L1/L2 revealed that their upregulation resulted in membrane transfer called “trogocytosis” from HRS cells to monocytes. PD-L1/L2 upregulation was not observed in monocytes co-cultured with PD-L1/L2-deficient HRS cells, validating the hypothesis that there is a direct transfer of PD-L1/L2 from HRS cells to monocytes. In the patients, both ligands (PD-L1/L2) were upregulated in TAMs in contact with HRS cells, but not in TAMs distant from HRS cells, suggesting that trogocytosis occurs in cHL patients. Taken together, trogocytosis may be one of the mechanisms that induces rapid upregulation of PD-L1/L2 in monocytes to evade antitumor immunity through the suppression of T cells as mediated by MHC antigen presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monocytes migrate towards and come into direct contact with HRS cell lines.
Fig. 2: PD-L1/L2 expression was rapidly upregulated in monocytes by direct contact with HRS cells.
Fig. 3: PD-L1/L2 were transferred from HRS cells to monocytes.
Fig. 4: Expression of PD-L1/L2 on monocytes was unchanged in co-cultures with PD-L1/L2-deficient HRS cells.
Fig. 5: PD-L1 on THP-1 cells from HRS cells has an inhibitory effect on T cells.
Fig. 6: Expression of PD-L1 and PD-L2 on TAMs in contact with HRS cells were higher than in TAMs distant from HRS cells in cHL patients.
Fig. 7: Schema for the tumor microenvironment in cHL.

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris N, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC; 2017.

    Google Scholar 

  2. Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010;221:248–63.

    CAS  PubMed  Google Scholar 

  3. Steidl C, Connors JM, Gascoyne RD. Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol. 2011;29:1812–26.

    CAS  PubMed  Google Scholar 

  4. Kuppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Investig. 2012;122:3439–47.

    PubMed  PubMed Central  Google Scholar 

  5. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl J Med. 2010;362:875–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120:3280–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo B, Cen H, Tan X, Ke Q. Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical Hodgkin lymphoma. BMC Med. 2016;14:159.

    PubMed  PubMed Central  Google Scholar 

  8. Tadmor T, Bari A, Marcheselli L, Sacchi S, Aviv A, Baldini L, et al. Absolute monocyte count and lymphocyte-monocyte ratio predict outcome in nodular sclerosis Hodgkin lymphoma: evaluation based on data from 1450 patients. Mayo Clin Proc. 2015;90:756–64.

    PubMed  Google Scholar 

  9. Porrata LF, Ristow K, Colgan JP, Habermann TM, Witzig TE, Inwards DJ, et al. Peripheral blood lymphocyte/monocyte ratio at diagnosis and survival in classical Hodgkin’s lymphoma. Haematologica. 2012;97:262–9.

    PubMed  PubMed Central  Google Scholar 

  10. Skinnider BF. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99:4283–97.

    CAS  PubMed  Google Scholar 

  11. Ma Y, Visser L, Roelofsen H, de Vries M, Diepstra A, van Imhoff G, et al. Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood. 2008;111:2339–46.

    CAS  PubMed  Google Scholar 

  12. Peyraud F, Cousin S, Italiano A. CSF-1R inhibitor development: current clinical status. Curr Oncol Rep. 2017;19:70.

    PubMed  Google Scholar 

  13. von Tresckow B, Morschhauser F, Ribrag V, Topp MS, Chien C, Seetharam S, et al. An open-label, multicenter, phase I/II study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory Hodgkin lymphoma. Clin Cancer Res. 2015;21:1843–50.

    Google Scholar 

  14. Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130:2420–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111:3220–4.

    CAS  PubMed  Google Scholar 

  16. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34:2690–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl J Med. 2015;372:311–9.

    PubMed  Google Scholar 

  19. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17:1283–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34:3733–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35:2125–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood. 2017;129:2471–8.

    CAS  PubMed  Google Scholar 

  23. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206:1327–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat Commun. 2017;8:14572.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Investig. 2018;128:805–15.

    PubMed  PubMed Central  Google Scholar 

  26. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. 2017;23:3158–67.

    CAS  PubMed  Google Scholar 

  27. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131:1809–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Davis DM. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol. 2007;7:238–43.

    CAS  PubMed  Google Scholar 

  30. Ahmed KA, Munegowda MA, Xie Y, Xiang J. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol. 2008;5:261–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakayama M. Antigen presentation by MHC-dressed cells. Front Immunol. 2014;5:672.

    PubMed  Google Scholar 

  32. Nakayama M, Takeda K, Kawano M, Takai T, Ishii N, Ogasawara K. Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4+ T cells. Proc Natl Acad Sci USA. 2011;108:18360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Roda-Navarro P, Reyburn HT. Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J. 2007;21:1636–46.

    CAS  PubMed  Google Scholar 

  34. Trambas CM, Griffiths GM. Delivering the kiss of death. Nat Immunol. 2003;4:399–403.

    CAS  PubMed  Google Scholar 

  35. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015;21:81–85.

    CAS  PubMed  Google Scholar 

  37. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125:1061–72.

    CAS  PubMed  Google Scholar 

  39. Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol. 2018;36:942–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016;537:417–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wein F, Kuppers R. The role of T cells in the microenvironment of Hodgkin lymphoma. J Leukoc Biol. 2016;99:45–50.

    CAS  PubMed  Google Scholar 

  43. Wein F, Weniger MA, Hoing B, Arnolds J, Huttmann A, Hansmann ML, et al. Complex immune evasion strategies in classical Hodgkin lymphoma. Cancer Immunol Res. 2017;5:1122–32.

    CAS  PubMed  Google Scholar 

  44. Cader FZ, Schackmann RCJ, Hu X, Wienand K, Redd R, Chapuy B, et al. Mass cytometry of Hodgkin lymphoma reveals a CD4(+) regulatory T-cell-rich and exhausted T-effector microenvironment. Blood. 2018;132:825–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    CAS  PubMed  Google Scholar 

  46. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mimura K, Teh JL, Okayama H, Shiraishi K, Kua LF, Koh V, et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018;109:43–53.

    CAS  PubMed  Google Scholar 

  48. Thorn M, Guha P, Cunetta M, Espat NJ, Miller G, Junghans RP, et al. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther. 2016;23:188–98.

    CAS  PubMed  Google Scholar 

  49. Gu P, Gao JF, D’Souza CA, Kowalczyk A, Chou KY, Zhang L. Trogocytosis of CD80 and CD86 by induced regulatory T cells. Cell Mol Immunol. 2012;9:136–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ho WT, Pang WL, Chong SM, Castella A, Al-Salam S, Tan TE, et al. Expression of CD137 on Hodgkin and Reed-Sternberg cells inhibits T-cell activation by eliminating CD137 ligand expression. Cancer Res. 2012;73:652–61.

    PubMed  Google Scholar 

  51. Panjwani PK, Charu V, DeLisser M, Molina-Kirsch H, Natkunam Y, Zhao S. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–99.

    CAS  PubMed  Google Scholar 

  52. Tanaka Y, Maeshima AM, Nomoto J, Makita S, Fukuhara S, Munakata W, et al. Expression pattern of PD-L1 and PD-L2 in classical Hodgkin lymphoma, primary mediastinal large B-cell lymphoma, and gray zone lymphoma. Eur J Haematol. 2018;100:511–7.

    CAS  PubMed  Google Scholar 

  53. Casagrande N, Borghese C, Visser L, Mongiat M, Colombatti A, Aldinucci D. CCR5 antagonism by maraviroc inhibits Hodgkin lymphoma microenvironment interactions and xenograft growth. Haematologica. 2019;104:564–75.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Chisa Okada, Kazuhiro Yoshida, Yoshinori Okada, Hiromi Iida, Yudai Kawai, and the Support Center for Medical Research and Education, as well as Tokai University for technical assistance.

Funding

This research was supported by The Jikei University Research Fund for Graduate Students to MKw; Precursory Research for Embryonic Science and Technology, AMED-PRIME to AK; the Research Program on Hepatitis from the Japan Agency for Medical Research and Development (19fk0210054s0201), the Core Research for Evolutional Science and Technology (CREST) of the Japan, and the Uehara Memorial Foundation to AK.

Author information

Authors and Affiliations

Authors

Contributions

MKw, HH, RK, TH, KO, NS, MKk, YM, KA, MN, SU, RH, YH, KK, SG, TK, KC, SY, and AK performed the experiments shown in this study. JC and NN carried out immunostaining and evaluated the slides of cHL patients. MKw performed all other experiments and statistical analysis; MKw and AK wrote the paper; AK edited the paper drafts.

Corresponding author

Correspondence to Ai Kotani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawashima, M., Carreras, J., Higuchi, H. et al. PD-L1/L2 protein levels rapidly increase on monocytes via trogocytosis from tumor cells in classical Hodgkin lymphoma. Leukemia 34, 2405–2417 (2020). https://doi.org/10.1038/s41375-020-0737-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0737-9

This article is cited by

Search

Quick links