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Abstract
Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To
understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome
and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and
processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven
proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of
these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared
with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-
expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML
cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are
the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation
of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML
survival and could be a therapeutic target in AML.

Introduction

Acute myeloid leukemia (AML) is a disorder arising from
developmental arrest of cells of the myeloid lineage [1]. The
realization that treatment with conventional cytotoxic agents

has likely reached its limits in terms of delivering patient
benefit, has fueled a drive towards understanding the complex
and highly heterogeneous molecular mechanisms underlying
AML with the aim of delivering more targeted therapeutic
approaches. Whilst common mutations have been character-
ized in AML [2]; it is generally acknowledged that these are
unable to fully account for the highly heterogeneous nature of
this disease [3]. Messenger RNA abundance can be used as an
alternative strategy for target identification but mRNA levels
are not powerful predictors of protein expression [4]. Further,
aberrant localization of proteins to the nucleus can alter their
function to induce cancer development, block in hemopoietic
development, or diminish tumor suppressor function [5].
Therefore, transcriptional profiling alone is an inefficient tool
for target discovery and is often combined with alternative
technologies [6]. Advances in mass-spectrometry (MS) based
technologies have allowed researchers to characterize and
identify proteins in complex biological samples providing
direct data on relative protein abundance [7].

Given that inappropriate localization of cancer-related
proteins, including oncoproteins and tumor suppressor
proteins may interfere with normal cellular function, we
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hypothesized that the developmental arrest, sustained pro-
liferation, and prosurvival characteristics of AML blasts may
in part be mediated through misexpression or mislocalization
of proteins to the nucleus. The aim of this study was to
identify new therapeutic targets in AML through examination
of the abundance of proteins in the nuclei of AML blasts
using MS proteomics. We used isobaric tags for relative and
absolute quantification (iTRAQ) together with liquid
chromatography-tandem MS (LC-MS/MS) to analyze the
nuclear proteome of the minimally differentiated AML blasts
in comparison with developmentally-matched human CD34+

hemopoietic stem/progenitor cells. A parallel transcriptome
analysis was performed to correlate the protein data with
transcriptional changes. Using this approach, we identified
over 110 commonly misexpressed nuclear proteins including
known abnormalities (such as WT1 and CEBPA) and novel
abnormalities such as NFIC, hnHRPs. The most strongly
over-expressed (novel) protein in the nucleus of AML patients
was S100A4 (aka metastasin, MTS-1).

S100A4 is a ~11 kDa protein which belongs to the S100
multigene family of calcium-binding proteins of the EF-
hand type (reviewed in [8]). They have diverse roles in a
variety of cellular processes including regulation of pro-
liferation, cell cycle progression, apoptosis, differentiation,
Ca2+ homeostasis, migration, adhesion, and transcription
but little is known of its role or subcellular expression in
hemopoiesis [9, 10]. S100A4 has been previously asso-
ciated with poor prognosis in several solid tumors [11–14]
and in leukemia [15, 16]. The functional implication of
altered S100A4 expression, subcellular localization, and
mechanisms of action in cancers (especially leukemia)
remain unidentified. Here we identified a potential role for
S100A4 and provide evidence supporting its clinical sig-
nificance in AML.

Materials and methods

Primary cell material and cell culture

Diagnostic bone marrow or peripheral blood from AML
patients and cord blood were collected with informed con-
sent; patient clinical characteristics were outlined in Sup-
plementary Methods. Normal human CD34+ cells were
isolated as previously described [17].

Cell lines were obtained from ECACCTM (Salisbury, UK)
or ATCC (Middlesex, UK) and cultured under recom-
mended conditions. The genetic identity of the cell lines was
confirmed by short tandem repeat (STR). Cells at passages
greater than twenty were not used in the experiments per-
formed in this study. Monitoring for Mycoplasma con-
tamination was performed using the MycoAlert Detection

Kit (Sigma). S100A4 harboring a nuclear localization
sequence (NLS) was expressed utilizing retroviral and len-
tiviral vectors co-expressing GFP as a selectable marker
(Supplementary Methods). For knock down studies, Mis-
sion® shRNA vectors based on TRC(1)2-pLKO.5-puro
(S100A4 shRNA and nonmammalian shRNA control) were
purchased from Sigma-Aldrich, Dorset, U.K. CD34+ cells
and cell lines were transduced and cultured as previously
described [17, 18].

Protein extraction, western blotting, and mass
spectrometry

Nuclear and cytoplasmic proteins were isolated from >5 ×
106 fresh/frozen CD34+ cells and AML blasts using the
Nuclear/Cytosol Fractionation Kit (Cambridge Bioscience,
U.K.) following manufacturer’s instructions. A fraction of
AML cells were also lysed in Trizol® for comparative
mRNA analysis (Supplementary Methods) [18].

Western blotting was carried out as previously described
[19] with the following antibodies: anti-S100A4 (clone
D9F9D, Cell Signaling Technologies (CST), Netherlands),
Histone H1 (clone AE-4, AbD Serotec, U.K.), H3 (CST),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(6C5, Santa Cruz Biotechnology, Heidelberg, Germany).

Detailed MS proteomic methods and data analysis are
shown in Supplementary Methods. The MS proteomics data
have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE
partner repository with the data set identifier PXD002799.

GeneChip® expression profiling (GEP)

RNA isolation and GEP using Affymetrix Human Tran-
scriptome Array 2.0 GeneChips® was performed as detailed
in Supplementary Methods. All data were analyzed using
Partek Genomics Suite Software using Gene Expression
workflow (v6.6; Partek Inc., MO, USA). Significant dif-
ferences were determined by ANOVA and a >±1.5 fold
changes in AML vs. CD34+. Data is available as supple-
mentary material at https://www.ebi.ac.uk/arrayexpress/
under the following Accession Number: E-MTAB-3873.

Cell proliferation and viability assays

Cells were seeded in triplicate in a 96-well flat-bottom
tissue-culture plate in serum-replete growth media at
1.6–2 × 105 cells/mL and incubated for up to 48 h post
infection. Cultures were harvested and viable (propidium
iodide (PI)-negative) cells were counted by flow cytometry.
For apoptosis assays, Annexin V-APC in combination with
PI staining was performed.
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Flow cytometry

Flow cytometric data were acquired using an AccuriTM

C6 cytometer (B.D. UK). Data was analyzed using
FCS Express® v6 (De Novo Software, CA). The threshold
for GFP positivity was determined from the auto-
fluorescence of GFP negative or mock transduced
cells. Supplier and isotype matched control stained cells
were used to determine background of labeled cells.
Debris and ejected nuclei were excluded from the analysis
of >10,000 events.

Statistical analysis

Statistical significance of nonparametric data was analyzed
by Mann–Whitney U-Test. Data represent mean ±1 SD.
Calculations were performed using Minitab® v16 (Minitab

Inc. USA). Network and Pathway data analysis was per-
formed using Key Pathway Advisor and MetacoreTM

(Clarivate Analytics, UK).

Results

Nuclear proteomics reveals novel proteins mis-
expressed in AML

We randomly selected 15 AML diagnostic samples from
minimally differentiated leukemia patients (FAB type
M1), to minimize variability arising from developmental
differences. AML blasts were >80% viable and did not
express CD14 and CD15 (Fig. 1a) (as previously descri-
bed [20]). For controls we used normal human CD34+

cells; immunophenotypic analysis of these cells

Fig. 1 Characterization and quality control of human CD34+ cells and
patient AML blast samples. a Example bivariate flow cytometric plot
showing viability and immunophenotype of AML blasts used in the
study (left). FAB subtype (established by morphology) was confirmed
by absence of CD14/CD15 expression [20]. Data exemplifying the
purity of CD34+ cells is shown in the right panel. Quadrants delimit
background isotype staining. b Example chromatograms of micro-
capillary electrophoresis using Agilent 2100 Bioanalyzer from

representative RNA samples of AML patients. c Examples of frac-
tionated protein purity and quality. Left panel shows nitrocellulose
immunoblots of samples fractioned for nuclear (N), or cytoplasmic (C)
proteins. Purity of the fractioned samples was assessed by immuno-
blotting for GAPDH and histone protein expression. Right panel
shows overall protein profile and integrity quality determined through
Coomassie Brilliant Blue G staining of polyacrylamide gels
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established all samples were >95% viable and 95%
CD34+ (Fig. 1a). For transcriptome analysis, defined high
quality RNA was isolated from all samples (Fig. S1b).
Isolation of nuclear proteins was carried out in parallel
and extract purity confirmed using western blotting of
cytoplasmic and nuclear protein markers (GAPDH and
histone respectively). This analysis showed little or no
apparent cytoplasmic contamination in the nuclear frac-
tion (Fig. 1b). The quality of protein extracts was con-
firmed by polyacrylamide gel electrophoresis which
showed the absence of detectable degradation (exempli-
fied in Fig. 1b).

To identify differentially expressed proteins, eight-
channel isobaric tagging coupled with LC-MS/MS was
employed to simultaneously compare nuclear proteins
from AML blast cells vs. normal CD34+ controls (Fig. S1a
for workflow). Three separate iTRAQ datasets were
acquired to analyze 15 AML samples and five controls.
Protein Pilot was used to normalize each ion/peptide
detected within the AML sample to the control(s) within
each run to provide a ratio of AML/CD34+ control. As
expected, distributions of detectable peptide ratios from
AML blasts vs. CD34+ (Fig. S1c) were similar, suggesting
overall similarity within the proteome. A total of 4666
quantifiable proteins were identified from the nuclear
samples (Table S1). Using peptides from CD34+ as
internal controls we calculated the intra-experiment 90%
confidence limits allowing us to determine if the protein(s)
was significantly altered in AML blasts. We then identified
frequently dysregulated proteins that changed in at least
five AML patients (±>2 fold) from at least two indepen-
dent MS runs. Where an AML patient sample was com-
pared with two CD34+ controls we accepted a protein as
‘changed in AML’ if changes against both controls were
coincident. This yielded 113 proteins of which 84 (75%)
were designated nuclear proteins (Table S2).

Functional enrichment analysis of these 113 proteins
showed that the most significant Gene Ontology ‘Processes’
and ‘Networks’ changed in AML patient blasts were related
to Transcription, mRNA processing, and stabilization
(Fig. 2a and Table S3). We observed changes in 13 het-
erogeneous nuclear ribonucleoproteins (hnRNP) affecting
mRNA processing including: A0, A1, A2B1, A3, AB, C, D,
DL, F, H1, M, R, and UL2. Enrichment by protein function
showed that TF were the class of proteins most significantly
enriched in our data set (Fig. 2a). We further analyzed the
interactions of these 113 proteins with each other using
MetaCoreTM analysis tool and the Direct Interaction algo-
rithm and found a network of 40 protein interactions
(Fig. 2b).

We identified three upregulated TF in leukemic cells
compared with normal CD34+ cells (Table 1); of these, two
had been previously associated with AML: CEBPA [21, 22]

and WT1 [23, 24]. The third, Nuclear Factor IC (NFIC), has
not been previously reported to be upregulated in AML.
NFIC belongs to the NFI family which is composed of four
members which differ in their ability to either activate or
repress transcription (reviewed in [25]). We also identified
eight down-regulated TF, of which two have been pre-
viously associated with AML: HMGA2 [26] and BCL11A
[27]. The remaining six downregulated proteins are novel
abnormalities in AML: DAZAP1, ILF2, ILF3, hnRPDL,
MYEF2, and TARDBP (Table 1).

To establish whether the protein expression changes
identified above (Table S2) were transcriptionally driven,
relative mRNA transcript abundance of AML blasts vs.
CD34+ was analyzed. It has been previously established
that mRNA expression is only predictive of protein
expression in as little as 40% of genes [4]. Our data were
in accord with this, with 60% agreement overall and 55%
concordance in our differentially expressed TFs with a
protein/mRNA fold change ≥±1.3 (Table 1 and Fig. 3a).
This was not only a characteristic of TFs since ~60% of the
significantly expressed proteins identified from our dataset
of 113 proteins did not correlate with changes in mRNA
expression (Fig. 3b). While transcription can provide at
least a partial explanation for changes in protein expres-
sion, these data suggest that posttranscriptional events are
of equivalent importance in regulating protein abundance
in AML.

Identification of aberrantly expressed proteins
driving transcriptional change in AML

In order to functionally validate changes identified in
Table 1, we carried out an unsupervised analysis of AML
specific changes in the transcriptome using ANOVA and
threshold analysis and coupled this with Metacore’sTM

network building algorithm on TF. This analysis identifies
over-connected networks of known interacting proteins
within the significantly changing mRNA dataset. This
approach revealed 311 TF (Table S4) and of those TF, 40
were found to be significantly changed in AML. Only the
changes in CEBPA and WT1 expression functionally vali-
dated the change observed at the protein level. This sug-
gests that the abundance of these two TF proteins correlates
with changes in expression of known CEBPA and WT1
target genes. This analysis is however dependent on the
level of annotation in the Clarivate knowledgebase and will
be subject to bias towards frequently studied proteins [28].
In light of this we tried an alternative approach to identify
aberrant driver TF activity by using a causal reasoning
algorithm (Key Pathway Advisor) to identify upstream
regulators that are responsible for influencing the changes in
nuclear protein expression observed in AML (Table S5);
however, these key hubs (the most significant of which was
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RNF4; Fig. S2) were also not predictive of the observed
protein changes.

In summary, nuclear proteomics identified transcription
as being the most dysregulated process in AML with both
known and novel TF being implicated (see “Discussion”).
Whilst we validated the role of the former (WT1, CEBPA)
by analysis of the corresponding transcriptome, we were
unable to achieve this with novel TF abnormalities (prob-
ably due to relatively poor database annotation for these
proteins).

S100A4 is over-expressed in the nucleus of AML
blasts

Having analyzed our data with respect to the most dysre-
gulated process, we next investigated the most strongly
changed proteins in AML compared with CD34+ cells
(Table 2). Amongst the Top 10 changing proteins, we
identified several proteins that have previously been
implicated as an abnormality in AML (Supplementary
Table S6). Among the previously non-implicated proteins,

Fig. 2 Functional enrichment analysis of protein changes observed in
AML vs. normal hemopoietic CD34+ cells using MetacoreTM.
a Enrichment analyses using Process Networks (left panel) and
enrichment by protein function (right panel) shows that ‘Transcrip-
tion’ is the most significant Network. The Network establishes rela-
tionships between the genes from the dataset but does not cluster them
according to a specific pathway. A false discovery rate (FDR) of 0.05
was applied. b Protein networks associated with the proteins up- or
downregulated in the nuclei of AML patient blasts. The network was
generated using direct interaction algorithm of MetaCoreTM (Clarivate

Analytics). Nodes represent proteins with lines between nodes indi-
cating protein interactions. Only connected nodes are shown. Arrow
heads indicate the direction of the interaction. Node shapes represent
the functional class of the proteins as shown in the graphic key
(Supplementary Fig. S2b). Red and blue circles indicate up and down
regulation respectively when compared with CD34+ nuclei. Inter-
actome analysis using “Transcription Factor” algorithm identified
CEBPA (p= 5.285e−08) and WT1 (p= 0.002825) as the most sig-
nificant connected transcription factors in our protein dataset
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the highest differential expression was seen in S100A4
(Fig. 3c). S100A4 [29] was significantly upregulated in the
nuclei of 11/15 AML patients with an average fold increase
of 5.5 when compared with controls. We validated the
expression of S100A4 in cytosolic and nuclear protein
fractions using western blot from the same samples used for
MS. As shown in Fig. 4a (and Fig. S3), S100A4 protein
expression was observed in the nucleus of AML blasts
(86%; 13/15) supporting our MS data. In contrast, nuclear
expression of S100A4 was undetectable in CD34+ controls.
Interestingly, S100A4 expression was also increased in the
cytoplasm of AML blasts versus normal controls. We
confirmed this data in a second cohort of patient AML
blasts which also showed nuclear overexpression in seven
of seven patients; and in the cytosol of nine of nine patients
(Fig. S3). To establish whether S100A4 was overexpressed
in a broader cohort of AML patients with blast differ-
entiation, we immunoblotted for S100A4 in FAB-M4 sub-
types (Fig. S4). Again, we found this protein to be over-
expressed in the nuclei of AML blasts (4/6 patients when
compared with normal human differentiated monocytes
(which had undetectable levels of nuclear S100A4 expres-
sion). We also observed S100A4 expression in all leukemia
cell lines analyzed with six of the ten lines having promi-
nent nuclear expression of the protein (Fig. 4b, c).

Upregulation of S100A4 expression in patients is also
supported by our transcriptome analysis of these samples
(Fig. 5) indicating that overexpression arises at least partly

at a transcriptional level. Analysis of several independent
datasets supports the overexpression of S100A4 mRNA in
AML (Figs. 5b(i) and S5). Further, data derived from
(TCGA) [30, 31] suggests that overexpression may confer a
poor prognosis (P= 0.0118; Fig. 5b).

In summary, nuclear overexpression of S100A4 is a very
common abnormality in AML patients and AML cell lines.

S100A4 expression is required for the growth and
survival of AML cells but not for normal myeloid
survival development

The above data shows S100A4 is over-expressed in the
nucleus in AML. To determine whether ectopic expression
of nuclear S100A4 can affect the growth and survival of
CD34+ cells, we attempted to overexpress nuclear-targeted
S100A4 in normal human hemopoietic cells (Fig. S6a).
Whilst, these vectors were able to express S100A4 in
HEK293T (Fig. S6b); overexpression of S100A4 could not
be demonstrated in transduced CD34+ cells despite
expressing GFP (Fig. S6c), probably due to rapid degra-
dation of S100A4 protein in these cells.

Data from our previous microarray analysis [18] suggest
differential expression of S100A4 mRNA in normal hemo-
poietic cell lineages (Fig. S7). Analysis at the protein level
confirmed cytosolic expression in monocytic, erythroid and
(weakly) in granulocyte progenitors as well as in normal
bone marrow. Nuclear S100A4 was absent in all samples

Table 1 Transcription factors frequently changed in the nucleus of patients with AML FAB M1

Gene symbol Gene name Frequency Protein fold change
(AML vs. CD34+)a

Normalized gene expression
(fold change AML vs. CD34+)

NFIC Nuclear Factor I C 6 5.5 1.5b

WT1 Wilms Tumor 1 8 2.9 5.6b

CEBPA CCAAT/enhancer binding protein
(C/EBP), alpha

7 2.9 1.7b

ILF3 Interleukin enhancer binding factor
3, 90 kDa

8 −2.4 −1.2

ILF2 Interleukin enhancer binding factor 2 7 −2.7 −1.2

hnRNPDL Heterogeneous nuclear ribonucleoprotein
D-like

11 −3.3 −1.0

BCL11A B-cell CLL/lymphoma 11A (zinc finger
protein)

8 −3.3 −1.4b

DAZAP1 TAR DNA-binding protein 43 10 −3.4 −1.2

TARDBP DAZ associated protein 1 9 −3.8 1.3b

MYEF2 Myelin expression factor 2 10 −5.4 −3.7b

HMGA2 High mobility group AT-hook 2 14 −5.9 −3.0b

Proteins were selected based on those that significantly changed co-directionally ± >2 fold between normal CD34+ control and AML in at least 5 of
the 15 patients (frequency)
aCalculation based solely on patients where a significant change was observed to derive the average fold change of AML vs. CD34+ normal
control. Also shown are the fold changes of normalized gene expression data of corresponding mRNA. Positive values are upregulated in AML vs.
control. Negative values downregulated in AML vs. control
bGenes considered to have a change in mRNA transcript abundance when analyzed by ANOVA (P < 0.05) and ≥ ± 1.3 fold compared with control
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(Fig. S7) suggesting that the nuclear localization of this
protein in AML is aberrant. To address whether S100A4
protein was required for normal hemopoietic cell develop-
ment, we knocked-down S100A4 expression in CD34+

cells (Fig. S8). Whilst these cells grew slightly slower (but
statistically not significant), we observed no significant
effect on lineage development of these cells (Fig. S8) sug-
gesting S100A4 is not required for normal hemopoiesis.
Indeed, S100A4 knock out mice do not show any obvious
phenotype at birth and develop normally [32].

We next examined the consequences of knocking down
S100A4 expression in leukemia cell lines (Fig. 6a). In all
lines, S100A4 knockdown significantly impaired the
growth of these cells (Figs. 6b and S8). Further, KD of
S100A4 in AML cells (KG1) with little S100A4 expression,
showed no effect on proliferation. Using flow cytometric
analysis of annexin V and PI staining, the percentage of
cells in early or late apoptosis was determined (Fig. 6c). In

all cell lines tested, loss of S100A4 expression induced
annexin V positivity (Fig. 6d) suggesting that the lack of
cell growth observed above was a result of programmed cell
death. Taken together these data infer that S100A4 is
required for AML cell survival but not for normal cells
suggesting that targeting S100A4 would be an effective
strategy in this disease.

Discussion

Given that developmental arrest is common to all AML and
is mediated through misregulation of the differentiation
program a number of groups have used transcriptome ana-
lyses such as oligonucleotide array or RNAseq for deter-
mining the genome wide gene expression [33–35].
However, it is becoming increasingly clear that analysis of
mRNA alone is insufficient to predict biological function

Fig. 3 Correlation of protein and mRNA transcript expression of
nuclear proteins changed in AML. a Protein and mRNA expression
changes in two transcription factors identified to be differentially
expressed between AML blasts and normal human CD34+ cells using
LC/LC-MS/MS. Values below one are repressed in AML blasts. Some
patients do not have a significant detection of protein when analyzed
by LC/LC-MS/MS. b Correlation of nuclear protein expression with
mRNA expression in nuclear proteins identified to be significantly

changed between AML and CD34+ cells. Legend depicts level of
change in protein expression in AML vs. normal CD34+ cells.
Negative values depict lower levels of expression in AML vs. CD34+

cells. c Box and whisker plot show relative MS quantitation of
S100A4 protein in expression in nuclear AML blasts vs. normal
controls (n= 11). The dashed line represents no change to control
(CD34+). Solid line indicates median and filled square indicates mean
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given that mRNA expression does not always equate to
protein expression and does not identify altered subcellular
localization of proteins. In this study we have therefore,
carried out proteomic analysis in tandem with tran-
scriptomics and have focused on protein changes within
the nuclear compartment which are otherwise under-
represented in whole cell proteomics.

Although model systems strongly implicate TF dysregu-
lation in this disease, in patient material only a few common
transcription factor abnormalities are known (e.g., PML-
RARA, RUNX1-ETO, Inv16, CEPBA) and these are mainly
associated with particular cytogenetic subsets of AML [36].
Therefore, large scale proteomic technologies are mainly used
to quantify changes in protein abundance in in vivo or ES
differentiation model systems [37–39]. However, the actual
transcriptional environment in primary AML patient material
characterized by the relative abundance of TF protein
expression compared with normal blasts has not yet been
described. However, the expression of some TF in AML and
in normal CD34+ cells was recently described using reverse
phase protein arrays using 228 validated antibodies [40].
Given that protein expression profiling patterns in AML
correlate with morphologic features [41], we restricted our
analysis to undifferentiated AML compared with normal
human undifferentiated CD34+ cells to minimize changes as a
result of differentiation. Using this approach, we identified
significant differences in protein expression in GO processes
involving mRNA stabilization. Further, we identified Net-
works enriched for transcription and observed significant
differences in TF protein abundance in AML blasts including

CEBPA and WT1. Importantly, several new and novel TF
which have not been previously reported as an abnormality in
AML were identified, among these were ILF2, ILF3,
TARDBP, hnRPDL, DAZAP1, MYEF2, and NFIC. Inter-
leukin enhancer binding factor (ILF) 2 encodes a 45 kDa
protein and forms a complex with the 90 kDa interleukin
enhancer-binding factor 3 (ILF3). This has been shown to
affect the redistribution of nuclear mRNA to the cytoplasm
and to negatively regulate the microRNA processing pathway
[42]. TAR DNA binding protein (TARDBP) is a RNA-
binding protein that has multiple functions including tran-
scription. Little is known about TARDP but strong expression
of this protein has previously been shown in the nucleolus of
AML cell lines [43]. hnRNPs comprise a family of RNA-
binding proteins, which are involved in processing hetero-
geneous nuclear RNAs into mature mRNAs and act as trans-
factors in regulating gene expression. Within the nucleus
these proteins are involved in RNA splicing, 3′-end proces-
sing, transcriptional regulation, and immunoglobulin gene
recombination [44]. Recently, Gallardo et al. showed that
AML patients harboring 9q deletions have decreased
HNRNPK expression implicating the role of this protein in the
development of AML [45]. NFIC belongs to NFI family of
transcription factors with associated members being NFIA,
NFIB, and NFIX. Regulation of cellular differentiation is
reported to be the fundamental function of these members
[46]. NFIC has been shown to be upregulated in several solid
tumors including gastric cancer, lung squamous cell carci-
noma, and colorectal cancer and is correlated with increased
expression of oncogenes [47, 48].

Table 2 Significantly changing nuclear proteins in AML patient blasts

Gene symbol Gene name Frequency Fold change
(AML vs. CD34+)a

Frequency × fold
change≠

Abnormally expressed
in AMLb

HMGA2 High mobility group protein HMGI 14 −6.0 84.7 Yes

ANXA1 Annexin A1 11 6.3 69.6 Yes

PTRF Polymerase I and transcript
release factor

11 −5.7 63.4 Yes

S100A4 Protein S100-A4 11 5.5 60.5 Not reported

LSP1 Lymphocyte-specific protein 1 13 −4.2 54.8 Yes

MYEF2 Myelin expression factor 2 10 −5.4 54.1 Yes

MPO Myeloperoxidase 9 5.3 48.4 Yes

ANXA4 Annexin A4 11 4.20 46.2 Yes

S100A6 Protein S100-A6 11 3.89 42.8 Not reported

FLNB Filamin B 13 −3.3 42.7 Yes

The top 10 most significant protein changes are shown based on the ≠product of frequency of observation and magnitude of change (independent of
direction of change). At a minimum, proteins must have significantly changed ± > 2 fold between normal CD34+ control and AML in at least 5 of
the 15 patients (Frequency) derived from Supplementary Table S2
aCalculation based solely on patients where a significant change was observed to derive the average fold change of AML vs. CD34+ normal
control. Positive fold change values are upregulated in AML vs. control. Negative values downregulated in AML vs. control
bLiterature references for proteins reported as an abnormality in AML are provided in Supplementary Table S6
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To correlate a transcriptome signature with TF expres-
sion we analyzed the transcriptome of AML cells and used
the network-building algorithm on transcription regulation
from MetaCoreTM to examine whether the modulated genes
are connected to TF. Several TF networks were identified
but none of them correlated with dysregulated TF protein

expression. Interestingly, 13 proteins involved in mRNA
processing were shown to be dysregulated suggesting that
posttranscriptional regulation of mRNAs and/or LncRNAs
could play a critical role in modulating transcription.
In support of this, analysis of our microarray data
revealed significant differences between the transcriptome

Fig. 4 S100A4 is over-expressed in the nucleus of AML blasts. a
Example immunoblots showing validation of S100A4 protein
expression and subcellular localization in same FAB M1 patient
samples analyzed by MS. Supplementary Fig. S3 shows relative
S100A4 expression in cytosol and nuclear fractions. S100A4 was
upregulated in the nuclei and cytoplasm of 13/15 AML patients
determined by western blot. AML samples 9, 11, and 12 were derived
from patient bone marrow; all others AML samples were derived from
peripheral blood. b Expression and subcellular localization of S100A4
in a cohort of leukemia cell lines. Cytosolic (C) and nuclear (N)
fractions were analyzed by GAPDH and Histone H1 to indicate the

purity/relative loading of each fraction. c Validation and expression of
endogenous S100A4 expression in K562 and ME-1 leukemic cells
lines using confocal laser scanning microscopy. These cell lines have
either low cytoplasmic or high nuclear protein expression of S100A4
respectively. Cells were stained with DAPI and Tubulin to define
cytoplasm and nuclear compartments. Fluorescence gains were
equivalent (and based on isotype controls for each panel); except for
ME−1** whose gain was reduced to allow the visualization of
S100A4 protein expression without saturation as shown in the
middle panel
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of AML cells and CD34+ cells particularly with the gen-
eration of mRNA transcripts through alternative splicing
(data not shown).

We next examined which proteins were the most sig-
nificantly changed in AML based on frequently of detection
coupled with highest fold changes in our cohort of patients.
We further focused on novel abnormalities by excluding
proteins with known published associations with AML
(Table 2). S100A4 was identified for further study, as the
most significant, fold changing protein in AML blasts that is
over-expressed in the nucleus of AML and has not been

previously associated with AML. S100A4 belongs to the
S100 multigene family of calcium-binding proteins of the
EF-hand type. These proteins are distributed into three main
subgroups based on regulatory control within the extra-
cellular or intracellular environments (or both). They have
diverse roles in a variety of cellular processes including
regulation of proliferation, cell cycle progression, apoptosis,
differentiation, Ca2+ homeostasis, migration, adhesion and
transcription [10, 29, 49]. S100A4 expression is found
to be over-expressed in several solid tumors and has
been associated with poor prognosis [11, 15, 16, 50, 51].

Fig. 5 Over-expression of S100A4 mRNA in AML. a Microarray data
demonstrating the normalized intensity of S100A4 mRNA (log2)
expression in normal human CD34+ cells (red; n= 3) and FAB-M1
AML (n= 15). RNA was isolated from samples that underwent mass
spectrometry. The transcriptome of these samples were analyzed by
Affymetrix Gene expression Profiling and data analyzed using Partek
Genomics Suite v6. The Pearson correlation of S100A4 mRNA with
protein expression was r= 0.45 (CI −0.206, 0.827). b S100A4 mRNA
expression data from Bloodspot [69]. (b(i)) mRNA expression level of
S100A4 in different AML subtypes vs. normal human hematopoietic
developmental subsets. Human normal hematopoiesis data derived

from GSE42519 [30] and human AML data derived from GSE13159
[70]. HSC, Hematopoietic stem cell Lin− CD34+ CD38− CD90+

CD45RA−; MPP, Multipotential progenitors Lin− CD34+ CD38−

CD90− 45RA−; CMP, Common myeloid progenitor cell Lin− CD34+

CD38+ CD45RA- CD123+; GMP, Granulocyte monocyte progenitors
Lin− CD34+ CD38+ CD45RA+ CD123+. (b(ii)) Overall survival of
AML patients stratified according to S100A4 expression level using
the AML TCGA dataset [31]. Statistical significance is denoted by *P
< 0.05; **P < 0.01 and ***P < 0.001 analyzed by t-test. ns; not
significant
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Interestingly, preferentially expressed antigen of melanoma
(PRAME) which has previously been shown to reduce
tumorigenicity of leukemic cells in vivo, has also been
shown to reduce expression of S100A4 [52], particularly in
those leukemias associated with favorable outcome (e.g., in
leukemia’s harboring RUNX1-ETO and PML-RARα).
More recently, Xu et al. demonstrated that PRAME

promotes apoptotic death of leukemia cells by regulating
S100A4/p53 signaling [16]. Others have previously shown
S100A4 to have a key role in proliferation, cell cycle pro-
gression and cell survival in transformed cells (reviewed in
[53]). S100A4 has been studied in breast cancer models
which have shown that over-expression of S100A4 in
nonmetastatic mammary tumor cells confers a metastatic

Fig. 6 S100A4 is required for cell survival in leukemia cell lines.
a Example western blot showing S100A4 expression in leukemia cells
with S100A4 knocked down (KD; TRCN0000416498) compared with
control (targeting nonmammalian gene) using shRNA. b Summary
data showing growth of leukemia lines with S100A4 KD
(TRCN0000416498) compared with control over 3 days of growth fol-
lowing infection (n= 3; except KG1 (n= 2). c, d Apoptosis was eval-
uated by flow cytometric analysis of APC-conjugated Annexin V
binding, while simultaneously assessing membrane integrity by PI

exclusion. c Example flow cytometric plots of S100A4 KD compared
with control using OCI-AML2. Annexin V− and PI− negative (lower—
left quadrant), annexin V+ and PI− (lower—right quadrant) and both
annexin V and PI positive (upper—right quadrant) cells were considered
as the viable, early-phase apoptotic, late-phase apoptotic/necrotic cells,
respectively. d Summary data showing the effect of S100A4 KD on
Annexin V staining in leukemia cell lines following 48 h post infection.
Data indicates mean ± 1 SD (n= 3). Statistical significance is denoted by
*P < 0.05; **P < 0.001 analyzed by paired t-test
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phenotype [54]. This is consistent with earlier studies where
knock down of S100A4 has been shown to reduce the self-
renewal capability and tumorigenic properties of solid
tumor cancer initiating cells [55, 56]. It is likely that these
effects are mediated through protein binding partners of
S100A4; for example, in vitro studies have shown that non-
muscle myosin heavy chain IIA (NM-MHC IIA) can bind
directly to S100A4 and modulate the interaction between
non-muscle myosin and actin, resulting in cytoskeletal
rearrangement and increased migration [57]. This would be
consistent with pathway changes we observed in the
nucleus of AML blasts (Fig. 2a). S100A4 has also been
shown to interact directly with p53 in the nucleus and
induce MDM2-dependent p53 degradation [58]. In this
latter study, S100A4 knock down leads to a p53-dependent
cell cycle arrest and increased cisplatin-induced apoptosis.
However, in this study we did not detect p53 bound to
S100A4 (data not shown). Interestingly S100A4 has pre-
viously been found to be a downstream target of CEBPA
[59] and SP1 [60, 61], key hub targets identified through
our transcriptome analysis.

Whilst S100A4 has been widely studied in solid tumors
very little is known of its role in hematological malig-
nancies. We show for the first time that normal CD34+

cells and myeloid differentiated lineages express this
protein in the cytosol. Knocking down expression of
S100A4 in AML lines results in cell death through
induction of apoptosis and hence is an attractive target for
cancer therapy particularly in AML given that normal
cells would be spared [62]. Increasing evidence suggests
that expression and subcellular localization of several
S100 proteins is different between physiological and
pathological conditions. Indeed, we also observed nuclear
expression changes in S100A6 and S100A11 in our data
set. Interestingly, S100A8 and S100A9 have previously
been shown to be abundant in myeloid cells and asso-
ciated with poor prognosis in AML [63–65]; these studies
focused on total expression and not subcellular expres-
sion. S100A4 is predominantly a cytosolic protein under
normal physiological conditions but few studies have
identified this protein in the nucleus of transformed cells
[66–68]. In our cohort of AML, there were very few cell
lines and patient derived blasts with no expression of
S100A4 in the nucleus. It remains to be determined
whether S100A4 is mislocalized to the nucleus in AML or
is a result of the high expression of this protein in AML.
S100A4 has been shown to undergo several posttransla-
tional modifications in other contexts, including oxidative
modification or sumoylation, which can modulate intra-
cellular localization [67]. Nuclear localization of S100A4
in AML would facilitate regulation of gene transcription
either through direct DNA binding, or through interaction
with other DNA‐binding proteins as previously described

[8]. However, we found little evidence of this in our
transcriptome data and MetacoreTM analysis; though this
analysis is dependent on the level of annotation in the
Clarivate knowledgebase [26]. We are currently investi-
gating the binding partners of S100A4 that are responsible
for the shuttling of this protein between the cytosplasm
and nucleus or whether S100A4 binds to nuclear proteins
that enhance its retention in the nucleus using proteomics.

In summary, we report the first study to use iTRAQ
proteomic analysis coupled with mRNA GEP to identify
several proteins that are expressed or repressed in the
nucleus of AML blasts. One of these proteins, S100A4, is
essential for AML cell growth and survival suggesting that
therapeutically targeting S100A4 would be an effective
strategy while sparing normal hemopoietic cells.
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