Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Bidirectional linkage between the B-cell receptor and NOTCH1 in chronic lymphocytic leukemia and in Richter’s syndrome: therapeutic implications

A Correction to this article was published on 13 December 2019

This article has been updated

Abstract

NOTCH1 mutations in chronic lymphocytic leukemia (CLL) lead to accumulation of NOTCH1 intracellular domain (NICD) and prolong signaling. These mutations associate with a more aggressive disease compared to wild-type (WT) CLL. In this work we demonstrate a bidirectional functional relationship between NOTCH1 and the B cell receptor (BCR) pathways. By using highly homogeneous cohorts of primary CLL cells, activation of NOTCH1 is shown to increase expression of surface IgM, as well as LYN, BTK, and BLNK, ultimately enhancing BCR signaling responses, including global mRNA translation. Upon BCR cross-linking, NOTCH1 itself is actively translated and increased on cell surface. Furthermore, BCR ligation induces calcium mobilization that can facilitate ligand-independent NOTCH1 activation. These data suggest that the two pathways are functionally linked, providing a rationale for dual inhibition strategies. Consistently, addition of the γ-secretase inhibitor DAPT to ibrutinib significantly potentiates its effects, both in vitro and in a short-term patient-derived xenograft model. While this observation may find limited applications in the CLL field, it is more relevant for Richter’s Syndrome (RS) management, where very few successful therapeutic options exist. Treatment of RS-patient-derived xenografts (RS-PDX) with the combination of ibrutinib and DAPT decreases disease burden and increases overall survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet. 2012;13:654–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208:1389–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2012;119:521–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Di Ianni M, Baldoni S, Rosati E, Ciurnelli R, Cavalli L, Martelli MF, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol. 2009;146:689–91.

    PubMed  Google Scholar 

  6. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526:519–24.

    CAS  PubMed  Google Scholar 

  7. Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, et al. Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia. 2017;31:1882–93.

    CAS  PubMed  Google Scholar 

  8. Calissano C, Damle RN, Hayes G, Murphy EJ, Hellerstein MK, Moreno C, et al. In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood. 2009;114:4832–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vallat LD, Park Y, Li C, Gribben JG. Temporal genetic program following B-cell receptor cross-linking: altered balance between proliferation and death in healthy and malignant B cells. Blood. 2007;109:3989–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vangapandu HV, Havranek O, Ayres ML, Kaipparettu BA, Balakrishnan K, Wierda WG, et al. B-cell receptor signaling regulates metabolism in chronic lymphocytic leukemia. Mol Cancer Res. 2017;15:1692–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi K, Sivina M, Hoellenriegel J, Oki Y, Hagemeister FB, Fayad L, et al. CCL3 and CCL4 are biomarkers for B cell receptor pathway activation and prognostic serum markers in diffuse large B cell lymphoma. Br J Haematol. 2015;171:726–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiestner A. Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood. 2012;120:4684–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123:1810–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014;24:71–81.

    CAS  PubMed  Google Scholar 

  16. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118:4313–20.

    CAS  PubMed  Google Scholar 

  17. D'Avola A, Drennan S, Tracy I, Henderson I, Chiecchio L, Larrayoz M, et al. Surface IgM expression and function are associated with clinical behavior, genetic abnormalities, and DNA methylation in CLL. Blood. 2016;128:816–26.

    CAS  PubMed  Google Scholar 

  18. Packham G, Krysov S, Allen A, Savelyeva N, Steele AJ, Forconi F, et al. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica. 2014;99:1138–48.

    PubMed  PubMed Central  Google Scholar 

  19. Tissino E, Benedetti D, Herman SEM, Ten Hacken E, Ahn IE, Chaffee KG, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yeomans A, Thirdborough SM, Valle-Argos B, Linley A, Krysov S, Hidalgo MS, et al. Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood. 2016;127:449–57.

    CAS  PubMed  Google Scholar 

  21. Sbarrato T, Horvilleur E, Poyry T, Hill K, Chaplin LC, Spriggs RV, et al. A ribosome-related signature in peripheral blood CLL B cells is linked to reduced survival following treatment. Cell Death Dis. 2016;7:e2249.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharm Res Perspect. 2015;3:e00149.

    Google Scholar 

  23. Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000;20:1825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fabbri G, Holmes AB, Viganotti M, Scuoppo C, Belver L, Herranz D, et al. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2017;114:E2911–E2919.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaturvedi A, Martz R, Dorward D, Waisberg M, Pierce SK. Endocytosed BCRs sequentially regulate MAPK and Akt signaling pathways from intracellular compartments. Nat Immunol. 2011;12:1119–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rozovski U, Harris DM, Li P, Liu Z, Jain P, Veletic I, et al. Activation of the B-cell receptor successively activates NF-kappaB and STAT3 in chronic lymphocytic leukemia cells. Int J Cancer. 2017;141:2076–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S, et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005;105:4820–7.

    CAS  PubMed  Google Scholar 

  28. Krysov S, Dias S, Paterson A, Mockridge CI, Potter KN, Smith KA, et al. Surface IgM stimulation induces MEK1/2-dependent MYC expression in chronic lymphocytic leukemia cells. Blood. 2012;119:170–9.

    CAS  PubMed  Google Scholar 

  29. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood. 2009;113:3050–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S, et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol. 2003;23:26–37.

    PubMed  PubMed Central  Google Scholar 

  31. Lindstrom MS. NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int. 2011;2011:195209.

    PubMed  Google Scholar 

  32. Pozzo F, Bittolo T, Vendramini E, Bomben R, Bulian P, Rossi FM, et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia. 2017;31:2407–15.

    CAS  PubMed  Google Scholar 

  33. Steinbuck MP, Arakcheeva K, Winandy S. Novel TCR-mediated mechanisms of notch activation and signaling. J Immunol. 2018;200:997–1007.

    CAS  PubMed  Google Scholar 

  34. Vaisitti T, Braggio E, Allan JN, Arruga F, Serra S, Zamo A, et al. Novel Richter syndrome xenograft models to study genetic architecture, biology, and therapy responses. Cancer Res. 2018;78:3413–20.

    CAS  PubMed  Google Scholar 

  35. Itchaki G, Brown JR. Experience with ibrutinib for first-line use in patients with chronic lymphocytic leukemia. Ther Adv Hematol. 2018;9:3–19.

    CAS  PubMed  Google Scholar 

  36. Arnason JE, Brown JR. Targeting B cell signaling in chronic lymphocytic leukemia. Curr Oncol Rep. 2017;19:61.

    PubMed  Google Scholar 

  37. Rossi D. Venetoclax: a new weapon to treat high-risk CLL. Lancet Oncol. 2016;17:690–1.

    PubMed  Google Scholar 

  38. Robak P, Robak T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia. Expert Opin Investig Drugs. 2017;26:1249–65.

    CAS  PubMed  Google Scholar 

  39. Brown JR. Relapsed CLL: sequencing, combinations, and novel agents. Hematol Am Soc Hematol Educ Program. 2018;2018:248–55.

    Google Scholar 

  40. Arruga F, Deaglio S. Mechanisms of resistance to targeted therapies in chronic lymphocytic leukemia. Handb Exp Pharmacol. 2017;249:203–29.

  41. Ryan RJH, Petrovic J, Rausch DM, Zhou Y, Lareau CA, Kluk MJ, et al. A B cell regulome links notch to downstream oncogenic pathways in small B cell lymphomas. Cell Rep. 2017;21:784–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2014;26:149–61.

    CAS  PubMed  Google Scholar 

  43. Wong GW, Knowles GC, Mak TW, Ferrando AA, Zuniga-Pflucker JC. HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRbeta-selected mouse thymocytes. Blood. 2012;120:1439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Platonova N, Manzo T, Mirandola L, Colombo M, Calzavara E, Vigolo E, et al. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation. Genes Chromosomes Cancer. 2015;54:516–26.

    CAS  PubMed  Google Scholar 

  45. Villegas SN, Gombos R, Garcia-Lopez L, Gutierrez-Perez I, Garcia-Castillo J, Vallejo DM, et al. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation. Cell Rep. 2018;22:2541–9.

    CAS  PubMed  Google Scholar 

  46. Steinbuck MP, Winandy S. A review of notch processing with new insights into ligand-independent notch signaling in T-cells. Front Immunol. 2018;9:1230.

    PubMed  PubMed Central  Google Scholar 

  47. Secchiero P, Voltan R, Rimondi E, Melloni E, Athanasakis E, Tisato V, et al. The gamma-secretase inhibitors enhance the anti-leukemic activity of ibrutinib in B-CLL cells. Oncotarget. 2017;8:59235–45.

    PubMed  PubMed Central  Google Scholar 

  48. Condoluci A, Rossi D. Treatment of Richter's syndrome. Curr Treat Options Oncol. 2017;18:75.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr F. Tito for excellent technical support in IHC staining. This work was carried out in the laboratories of the Italian Institute for Genomic Medicine hosted in the spaces of the Molecular Biotechnology Center of the University of Turin. This work was supported by the Italian Institute for Genomic Medicine Institutional funds (to SD), by the Associazione Italiana per la Ricerca sul Cancro (AIRC IG-17314 to SD, AIRC 5x1000 #21198 to GG), by the Italian Ministry of Health (GR-2011-02346826 to SD), by the Cancer Research UK (C2750/A23669 to GP, C34999/A18087 to FF), by Bloodwise (grants 18009 and 16003 to FF), by the GILEAD Fellowship Program (Gilead Italia 2018 to SD and Gilead UK & Ireland 2016 to FF) by the Keanu Eyles Haematology Fellowship for the Cancer Immunology Centre and by the Ministry of Education, University and Research-MIUR Progetto strategico di Eccellenza Dipartimentale #D15D18000410001 to the Dept. of Medical Sciences, University of Turin.

Author information

Authors and Affiliations

Authors

Contributions

FA designed the study, performed experiments, analyzed, and interpreted data and together with SD wrote the paper; VB, NV, KG, and AY performed experiments; TV established RS-PDX models and performed experiments; MC, GD’A, JNA, RRF, and GG: provided patient samples and relevant clinical information and contributed to data interpretation; GP and FF: discussed results and contributed to data interpretation; SD: designed the study, interpreted data and together with FA wrote the paper.

Corresponding authors

Correspondence to Francesca Arruga or Silvia Deaglio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruga, F., Bracciamà, V., Vitale, N. et al. Bidirectional linkage between the B-cell receptor and NOTCH1 in chronic lymphocytic leukemia and in Richter’s syndrome: therapeutic implications. Leukemia 34, 462–477 (2020). https://doi.org/10.1038/s41375-019-0571-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0571-0

This article is cited by

Search

Quick links