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To the Editor:

NOTCH1 mutation is one of the recurrent genetic lesions in
chronic lymphocytic leukemia (CLL), the most common
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leukemia in adult patients in Western countries [1–3].
NOTCH1 mutations associate with clinically aggressive
forms of CLL and have emerged as an independent pre-
dictor of adverse prognosis [3]. Approximately 80% of
NOTCH1 mutations in CLL consist of a 2-bp CT frameshift
deletion (c.7541_7542delCT) that generates a truncation in
the C-terminal PEST domain and prolongs the half-life of
the active form of NOTCH1, i.e., the intracellular domain of
NOTCH (ICN) [1, 2, 4–6]. There is evidence that the
NOTCH1 mutation results in a truncated protein more
stable than wild-type (WT) protein, thus sustaining active
NOTCH1 signaling in CLL cells [4]. However, whether
there is any functional difference between mutant and WT
NOTCH1 remains largely unknown, and relatively little is
known regarding why the most frequent NOTCH1 muta-
tions in CLL occur in the PEST domain.

Recent studies have demonstrated that NOTCH1 muta-
tions in CLL appear at the progenitor or pro-B cell stages
[7], and might contribute to the expansion of CLL hema-
topoietic progenitors or pro-B cells [8]. CLL hematopoietic
progenitors display higher levels of active ICN than their
healthy counterparts [9, 10]. Therefore, to investigate the
functional difference between mutant and WT NOTCH1 in
the B cell progenitors, we generated cell models mimicking
CLL hematopoietic progenitors with high levels of ICN by
ectopically expressing WT ICN (ICN) and mutant ICN
(ICN-delCT) in the murine B cell progenitor Baf3 cell line
[1], and determined whether they could differentially reg-
ulate the biological characteristics of these cells. Interest-
ingly, even though ICN-delCT was expressed at a level
comparable with ICN (Supplementary Fig. 1a), the Baf3
cells with ICN-delCT proliferated faster than those with WT
ICN in a dose-dependent manner (Supplementary Fig. 1b),
suggesting mutant NOTCH1 may cause more expansion in
pro-B cells than WT NOTCH1.

Upon entering the nucleus, ICN forms a complex with
the transcription factor CSL and the Mastermind-like family
of co-activators to activate the transcription of a series of
downstream genes such as HES1 and DTX1 [11]. To
determine whether WT and mutant ICN possess different
transcriptional activities, we performed luciferase reporter
assays in these cells using a 6xCSL-luciferase reporter.
While both ICN and ICN-delCT significantly activated the
reporter, ICN-delCT showed higher transcriptional activity
than ICN (Fig. 1a). These results indicate that the enhanced
pro-B cell expansion and elevated transcriptional activity
are not caused by the prolonged half-life of the active form
of NOTCH1, but rather reflect a functional difference
between mutant and WT NOTCH1.

To identify the mechanisms underlying the functional
difference between mutant and WT NOTCH1 in pro-B
cells, we sought to determine whether ICN and ICN-delCT
had different associated partners in the nucleus. ICN and its

associated partners were purified from nuclear extracts
derived from these Baf3 cells by immunoprecipitation using
NOTCH1 antibody. Mass spectrometry analysis identified
protein partners of ICN (Fig. 1b and Supplementary
Table 1). Interestingly, consistent with our finding that ICN-
delCT showed higher transcriptional activity, we found that
MTA2 and MTA1 proteins, both of which are components
of the nucleosome remodeling and deacetylase (NuRD)
corepressor complex [12], co-purified with ICN but not with
ICN-delCT (Supplementary Table 1). Factors involved in
transcriptional repression, including components of the
NuRD complex and the PRC1 complex, have been reported
to be associated with ICN in T-cell acute lymphoblastic
leukemia (T-ALL) cells [13]. However, because the primary
function of ICN is to activate transcription, the biological
significance of these interactions remains to be determined.
To verify that the NuRD complex interacts with ICN but not
ICN-delCT in B cells, we performed a co-
immunoprecipitation experiment in primary cells from
CLL patients and in these Baf3 cells and confirmed that
ICN, but not ICN-delCT, associated with the NuRD com-
plex components MTA2 and HDAC1 (Fig. 1c and Sup-
plementary Fig. 1c). The diminished interaction between
ICN-delCT and the NuRD corepressor complex might
thus contribute to the elevated transcriptional activity of
ICN-delCT in pro-B cells and over-activate a subset of
genes critical for the survival of CLL cells, thus contribut-
ing to the pathogenesis of CLL.

Next, we asked if it was the truncation in the PEST
domain that caused the diminished interaction between
ICN-delCT and the NuRD complex. To this end, we
examined the direct interactions between MTA2 and var-
ious PEST truncations using pull-down assays. The results
showed that the truncated PEST domain from mutant
NOTCH1 was no longer able to bind with MTA2, indi-
cating the C-terminal portion of the PEST domain which is
lost in mutant NOTCH1 was responsible for direct inter-
action with MTA2 (Fig. 1d). Previously, besides providing
a degradation signal, other functions of the PEST domain in
NOTCH1 had not yet been identified. However, our results
suggest the PEST domain not only provides a degradation
signal, but also participates actively in NOTCH1 function
by recruiting critical protein partners such as the NuRD
complex.

Because the NuRD corepressor complex interacts speci-
fically with ICN but not with ICN-delCT in B cells, we
hypothesized that at least a subset of dormant NOTCH1
target genes were not activated until NOTCH1 was mutated.
To identify the NOTCH1 target genes that are preferentially
activated by mutant NOTCH1, we performed gene expres-
sion profiling of these Baf3 cells. Gene ontology analysis
showed that immune system processes were upregulated in
Baf3 cells expressing ICN-delCT (Supplementary Fig. 2a).
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Consistently, the KEGG pathway enrichment analysis also
identified that genes referring to cytokine–cytokine receptor
interaction and the chemokine signaling pathway were sig-
nificantly enriched in the ICN-delCT group (Supplementary
Fig. 2b). In particular, genes encoding Ccl17 family che-
mokines, including the Ccl17 and Ccl22 genes,
were significantly upregulated in the ICN-delCT group
(Fig. 2a, b). These results indicated that the Ccl17 and Ccl22
genes as NOTCH1 target genes preferentially activated by
mutant NOTCH1. In line with this, the mRNA level of
CCL17 and CCL22 was significantly elevated in primary
CLL cells with NOTCH1-delCT (Fig. 2c). We further rea-
nalyzed the published RNA-seq data in CLL patients
(GSE92626) [9], and confirmed that the transcriptional level

of the CCL17 gene was elevated in human CLL cells with
NOTCH1-delCT (Supplementary Fig. 2c, d).

To confirmthe pivotal role of the NuRD corepressor
complex in suppressing the expression of CCL17 family
genes, we knocked down the MTA2 gene in the
primary CLL cells and observed that MTA2 depletion sig-
nificantly induced the expression of the CCL17 and CCL22
genes in NOTCH1-WT but not NOTCH1-delCT CLL cells
(Fig. 2d, e). In contrast, the mRNA level of other NOTCH1
target genes, such as HES1, HES4, and HEY1, was not
significantly induced by MTA2 depletion (Supplementary
Fig. 3a), indicating that only a subset of NOTCH1 target
genes in CLL cells were repressed by the NuRD corepressor
complex. To determine whether CCL17 gene transactivation

Fig. 1 ICN but not ICN-delCT interacts with NuRD corepressor
complex. a The dual-luciferase reporter assay with the 6xCSL-luc
reporter in Baf3 cells transfected with ICN/ICN-delCT plasmids or the
empty vector as a control. Efficiency of transfection was normalized to
Renilla luciferase. b The liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) assay of the protein solution immunoprecipi-
tated using anti-NOTCH1 antibody from Baf3 cells transfected with
plasmids expressing GFP-tagged ICN/ICN-delCT as indicated. The
part base peak spectra of the binding targets of MTA2 are shown.
c The co-IP assay of the indicated primary cells of the CLL patients.
Cellular lysates were immunoprecipitated with anti-ICN (cleaved

NOTCH1, Val1744) antibody (CST #4147), then immunoblotted with
anti-NOTCH1 (CST #3608), anti-ICN (CST #4147), anti-MTA2, or
anti-HDAC1 antibodies, respectively. CLL-WT, CLL with WT
NOTCH1; CLL-delCT, CLL with NOTCH1-delCT mutation. d The
GST pull-down assay to measure the interaction of MTA2 with
GST tagged PEST domain (GST-324), and PEST truncated fragment
(GST-N195 and GST-C129). GST-fusion proteins were purified from
E. coli, evaluated by immunoblotting, and incubated with eukaryotic
expressed MTA2. Glutathione beads bound proteins were evaluated
by western blotting with anti-MTA2 antibody. ***P < 0.001;
two-tailed t-test. Data represent means of triplicate reactions ± sem

Letter 2953



in primary CLL cells was associated with a diminished
interaction between ICN-delCT and the NuRD complex, we
examined the recruitment of MTA2 and HDAC1 onto the
CSL-binding sites of the CCL17 gene using chromatin
immunoprecipitation (ChIP) assays. Both WT ICN and ICN-

delCT showed a significant enrichment on the CSL-binding
sites of the CCL17 gene; however, the enrichment of MTA2
and HDAC1 on these sites was significantly decreased in
NOTCH1-delCT CLL cells (Fig. 2f). The diminished
recruitment of the NuRD complex to the Ccl17 gene was
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also validated in ICN-delCT-expressing Baf3 cells (Sup-
plementary Fig. 3b). Taken together, these results suggest
that the diminished interaction between ICN-delCT and the
NuRD complex is responsible for the transactivation of the
CCL17 gene in the NOTCH1-delCT CLL cells.

Chemokine CCL17 plays a critical role in the survival of
CLL cells by modulating the tumor microenvironment [14].
Malignant CLL cells have the capacity to attract CD4+

T-cells expressing CCR4, the receptor for CCL17 and
CCL22, which provide survival and growth signals to CLL
cells [15]. In line with the elevated RNA level, ELISA assays
also confirmed that chemokine CCL17 was significantly
elevated in the serum of CLL patients with NOTCH1-delCT
(Fig. 2g). Consistently, the chemokine Ccl17 was also sig-
nificantly induced in the supernatant of ICN-delCT-
expressing Baf3 cells (Supplementary Fig. 3c). Transwell
assays further showed that the number of migrating CD4+ T-
cells was notably increased by the media of ICN-delCT-
expressing Baf3 cells and the serum of NOTCH1-delCT
CLL patients (Fig. 2h, i), which could be effectively blocked
by CCL17 antibody. Hence, the NOTCH1 mutation in CLL
is related to the induction of CCL17 and subsequently
induced the migration of CD4+ T-cells, which changes the
microenvironment to favor tumor cell survival.

NOTCH1 genetic alterations have been described in
different human malignancies, including T-ALL and CLL.
Nevertheless, the reason why NOTCH1 mutations affect
two different domains in CLL and T-ALL remains unclear.
Our study proposes that loss of NuRD complex interaction

is a novel mechanism underlying the activation of NOTCH1
prevalent in CLL (Fig. 2j). Our study revealed that in CLL,
the prevailing NOTCH1 mutants lacking an intact
C-terminal PEST domain not only became more stable, but
also gained additional function by becoming more potent
transcriptional activators. Our study thus explains why
NOTCH1 mutations in CLL preferentially occur in the
PEST domain and provides new insights that will enable
more precise therapeutic strategies specific for NOTCH1-
mutated CLL.

Data availability

RNA-seq raw data are available in the Gene Expression
Omnibus database under accession number GSE115728.
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To the Editor:

The World Health Organization (WHO) classification of
acute myeloid leukemia (AML) has incorporated molecular
genetic and cytogenetic aberrations in the definition of
most entities [1]. The diagnosis of acute panmyelosis with
myelofibrosis (APMF) is still not based on genomic
changes but on clinicopathologic features and the exclusion
of other myeloid malignancies, in particular AML with
myelodysplasia-related changes (AML-MRC) [2]. APMF is
a rapidly progressive hyperfibrotic subtype of “AML not
otherwise specified” (AML NOS) and accounts for <1%
of AML cases [3]. This aggressive disease is characterized
by rapid onset of cytopenia and constitutional symptoms
in the absence of splenomegaly, previous history of mye-
loproliferative neoplasm (MPN) or myelodysplastic
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