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To the Editor:

The World Health Organization (WHO) classification of
acute myeloid leukemia (AML) has incorporated molecular
genetic and cytogenetic aberrations in the definition of
most entities [1]. The diagnosis of acute panmyelosis with
myelofibrosis (APMF) is still not based on genomic
changes but on clinicopathologic features and the exclusion
of other myeloid malignancies, in particular AML with
myelodysplasia-related changes (AML-MRC) [2]. APMF is
a rapidly progressive hyperfibrotic subtype of “AML not
otherwise specified” (AML NOS) and accounts for <1%
of AML cases [3]. This aggressive disease is characterized
by rapid onset of cytopenia and constitutional symptoms
in the absence of splenomegaly, previous history of mye-
loproliferative neoplasm (MPN) or myelodysplastic
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syndrome (MDS), and exposure to radiation or cytotoxic
drugs. Blood smears are devoid of tear-drop-shaped cells
but may contain dysplastic platelets and myeloid cells
including rare blasts [2, 3]. Histopathologic evaluation of
core bone marrow (BM) biopsies is mandatory to recognize
the hallmark of this myeloid neoplasm: “panmyelosis”, i.e.
trilineage myeloid proliferation with dysplastic erythropoi-
esis, abundant atypical megakaryocytes, and overt BM
fibrosis ≥ grade 2 on a 0–3 scale and ≥20% predominantly
CD34-positive precursors/blasts often arranged in clusters
(Fig. 1a–d) [3–5]. As a consequence of dry tap BM
aspiration and rare circulating CD34-positive precursors/
blasts, genetic data are reported in a limited number of
patients. An abnormal karyotype lacking recurrent aberra-
tions was identified in most APMF cases with available
cytogenetic information. Published cytogenetic data were
similar to AML-MRC including aberrations of chromosome
5q, 7q/7, 8, and 11q [3, 4]. Two other studies detected
different chromosomal aberrations involving chromosomes
3q, 5, 12, 13q, and 22 [6, 7]. In a single APMF patient, an
amplification of EVI1/MECOM within a derivative chro-
mosome 8 was described [8]. In another study of four
APMF patients no JAK2 V617F, MPL, or CALR mutations
were detected [9].

The first step of our study was to identify in our files
de novo AML patients who presented with relevant fibrosis
at initial diagnosis. Among those, we retrospectively re-
evaluated cases with available BM biopsies for the presence
of clinicopathologic features consistent with the 2016
WHO criteria for APMF. Cases with a previously proven
MDS-type cytogenetic profile and prominent dysplasia
involving ≥ 50% at least in two lineages as mandatory for
AML-MRC were excluded. In addition, no cases with
megakaryocytic abnormalities, such as arrangement in
dense clusters characteristic for primary myelofibrosis
(PMF) were considered. By consequently applying WHO
criteria, we retrieved a cohort of 16 patients that we could
assign to the APMF category (Fig. 1a–d, Table 1, Supple-
mentary Table 1). Briefly, the core biopsies showed BM
fibrosis grade 2–3 associated with a generally rather low
frequency of CD34-positive myeloblasts (median 30%
in the total cohort), a proliferation of predominantly
small dysplastic CD61-positive megakaryocytes and a
macroblastic glycophorin C-positive and CD71-positive
erythropoiesis with increased proerythroblasts. Using rou-
tine methods suitable for formalin-fixed paraffin-embedded
(FFPE) material MPL W515L was absent in 5/5 cases,
while 1/5 cases harbored a JAK2 V617F mutation with a
low (5%) mutant allele burden. Karyotyping by metaphase
analysis or FISH had been unsuccessful due to BM dry tap
and low circulating CD34+ cells. Thus, we performed
molecular studies on genomic DNA extracted from the
diagnostic FFPE and EDTA-decalcified BM trephine

biopsies by applying the OncoScanTM FFPE assay
(Thermo Fisher Scientific, MA, USA) for whole genome
tumor profiling [10]. Using stringent settings for gains and
losses (Supplementary Materials and Methods) genomic
copy number abnormalities (CNAs) were discovered in
94% (15/16) of APMF patients. Based on the number of
CNAs we could distinguish two groups within our APMF
cohort. Six patients harbored ≤ 3 (mean 2) CNAs and were
referred to as low genomic complexity group (Fig. 1e, f,
Table 1, Supplementary Table 2). The low complexity
group showed mostly single but heterogeneous CNAs
(Table 1). In contrast, 10 patients were assigned to a high
genomic complexity group since >3 (mean 15) CNAs were
identified. As a part of a complex genomic profile, the most
frequent CNAs were losses of 17p, 5q, and 7q (in 10, 9, and
9 patients, respectively). Other MDS-related or MPN-
related CNAs occurred with lower frequency such as loss of
18p in five patients and losses of 17q, 18q, 11p, and 3p, as
well as a gain of 3q in four patients, respectively (Fig. 1e,
Table 1, Supplementary Table 2). The gains of chromosome
3q, 8, 12q, 17q, and 21q, as well as loss of 7q were the
CNAs common to both groups and have been previously
described in APMF [3, 6, 8].

DNA for mutational analysis (Supplementary Informa-
tion) was only available in 5/16 patients (Table 1). Three of
these patients were assigned to the high complexity group
while two patients were included in the low complexity
group. Molecular profiling revealed TP53 mutations in all
of these five patients. Taken together with the copy number
results, 12/16 patients harbored TP53 abnormalities (i.e.
loss of 17p and/or TP53 mutation) including 3 with inac-
tivation of both TP53 alleles (Table 1).

Further mutations were detected in the epigenetic reg-
ulators DNMT3A and TET2 (in 2/5 samples), signaling
molecule CBL (1/5 sample), and co-repressor BCOR
(in 2/5 samples). Four patients did not show TP53
abnormalities in the OncoScan assay but were not evaluable
for TP53 mutation analysis. Thus, they were considered as
“TP53 unknown”.

As compared with other AML entities, the genetic altera-
tions underlying APMF are not well characterized. An inter-
esting finding that has not yet been described is the presence
of TP53 aberrations in the large majority of APMF patients.
In accordance, we frequently observed high levels of genomic
complexity suggesting a high genomic instability universally
associated with an adverse outcome in AML [11]. Patients of
the large high complexity group (10/16 patients) exhibited a
genetic profile overlapping with AMLMRC. TP53 alterations
are rare in de novo AML (about 8–14%) but are closely
associated with the presence of a complex karyotype and/or
monosomal karyotype [11, 12]. In a recent study, AML with
TP53 mutations and chromosomal aneuploidies, such as
deletions and monosomies of chromosomes 5, 7, 12, and 17,

Letter 2957



as well as trisomy 8 were considered a distinct category [12].
Patients in this subgroup were older and had the worst overall
survival of all AML subgroups [11]. Accordingly, the term
“AML with TP53 mutations and chromosomal aneuploidy”
could also be assigned to most of our APMF patients. The

detection of a JAK2 V617F mutation in one patient does not
exclude de novo AML but may suggest a rapidly transformed
MPN without a clinically evident chronic phase [13, 14].
MPN patients with TP53 mutations have a poor prognosis
with a high risk of transformation [14]. Very high risk PMF
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overlap at least in loss of 17p with APMF but the most fre-
quent CNAs reported in PMF affect different chromosomal
regions: 20q, 17q, 7p, 9p, 13q, or 1q [15]. Therefore, our
results could be helpful in distinguishing APMF from PMF.

Despite the molecular heterogeneity, all patients of our
APMF cohort had a dismal outcome with a median survival
of 5.4 months (range 1.8–11.3 months, Fig. 1g–i, Supple-
mentary Table 1). No patient was treated by allogeneic
hematopoietic stem cell transplantation. Three patients
received standard induction chemotherapy, one patient thali-
domide and another patient decitabine. Statistical analyses
comparing low versus high complexity cases or those with
known or unknown TP53 abnormalities did not reveal any
significant differences with regard to overall survival and
hematologic pretreatment parameters, except with regard to
platelet counts and number of CNAs (Fig. 1, Supplementary
Table 1). Patients negative for TP53 abnormalities in the
OncoScan assay and unknown TP53 mutation status had
significantly higher platelet counts (p= 0.045) and lower
numbers of CNAs (p= 0.006) than those with TP53
abnormalities. It is worth noting that the superior survival of
11.3 months was observed in a patient of the high complexity
group with a TP53 exon 10 splice site mutation receiving
hypomethylating therapy (decitabine). Interestingly, the fre-
quency of TP53 splice mutations (4/5, 80%) in our cohort is
high, compared to the splice mutation frequency of around
5% in myeloid neoplasms (11/201, see Suppl.) estimated from
the IARC TP53 database. Whether this observation can be
confirmed and may even be linked to the fibrotic phenotype
needs to be shown in a larger cohort.

The mechanisms that contribute to the typical morpho-
logic and clinical features, and the rapidly progressive dis-
ease that entailed the designation as APMF still remain to
be elucidated. Previously, we have observed an increased
inflammatory T-cell rich background in APMF core biop-
sies [5]. Inflammatory microenvironment changes of the
niche may contribute to genomic instability of hemato-
poietic stem cells and disease evolution. Cytokines and
chemokines released from inflammatory cells and abundant
megakaryocytes may contribute to the fibrotic modulation
of the BM that is a hallmark of APMF. Although the
number of our patients is small and the spectrum of methods
that we could apply is limited, the data presented here
provide further insights into the molecular basis of APMF
and highlight the high prevalence of TP53 abnormalities
and chromosomal aneuploidy.
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To the Editor:

Hematopoietic stem cells (HSCs) are a rare population
residing at the apex of the hematopoietic hierarchy [1].
HSCs have the capacity to self-renew and differentiate into
all blood cell types, thus they play a key role in hemato-
poietic cell transplantation (HCT) [2]. HCT is widely used
as a curative therapy for numerous malignant and non-
malignant hematological and even non-hematological
diseases [3]. The fast developing field of gene editing
techniques, including ZFNs, TALENs and CRISPR-Cas9,
broaden usage of HCT in clinical therapy of diseases
caused by genetic mutations [4]. i.e. β-thalassaemia or
Sickle Cell Disease (SCD) may possibly be interrogated by
CRISPR based gene editing of β-globin in HSCs
from patients [5]. However, efficient gene editing and
infusion of the gene edited HSC into patients requires
sufficient numbers of donor HSC. In addition, when cord
blood (CB) is used as the source of HSC for HCT,
rare HSC numbers in single CB units may lead to delayed
hematopoietic recovery in recipients [6]. It is thus
important in some cases to develop efficient means
that can overcome limited HSC numbers to enhance the
efficacy of HCT.
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