Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells

Abstract

The variable clinical course in chronic lymphocytic leukaemia (CLL) largely depends on p53 functionality and B-cell receptor (BCR) signalling propensity; however, it is unclear if there is any crosstalk between these pathways. We show that DNA damage response (DDR) activation leads to down-modulating the transcriptional factor FOXP1, which functions as a positive BCR signalling regulator and its high levels are associated with worse CLL prognosis. We identified microRNA (miRNA) miR-34a as the most prominently upregulated miRNA during DDR in CLL cells in vitro and in vivo during FCR therapy (fludarabine, cyclophosphamide, rituximab). MiR-34a induced by DDR activation and p53 stabilization potently represses FOXP1 expression by binding in its 3′-UTR. The low FOXP1 levels limit BCR signalling partially via derepressing BCR-inhibitory molecule CD22. We also show that low miR-34a levels can be used as a biomarker for worse response or shorter progression free survival in CLL patients treated with FCR chemoimmunotherapy, and shorter overall survival, irrespective of TP53 status. Additionally, we have developed a method for the absolute quantification of miR-34a copies and defined precise prognostic/predictive cutoffs. Overall, herein, we reveal for the first time that B cells limit their BCR signalling during DDR by down-modulating FOXP1 via DDR-p53/miR-34a axis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  Google Scholar 

  2. Furman RR, Cheng S, Lu P, Setty M, Perez AR, Guo A, et al. Ibrutinib resistance in chronic lymphocytic leukemia. N Engl J Med. 2014;370:2352–4.

    Article  CAS  Google Scholar 

  3. Hallek M, Fischer K, Fingerle-Rowson G, Fink A, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

    Article  CAS  Google Scholar 

  4. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  Google Scholar 

  5. Trbusek M, Smardova J, Malcikova J, Sebejova L, Dobes P, Svitakova M, et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol. 2011;29:2703–8.

    Article  CAS  Google Scholar 

  6. Malcikova J, Pavlova S, Kozubik KS, Pospisilova S. TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat. 2014;35:663–71.

    Article  CAS  Google Scholar 

  7. D’Avola A, Drennan S, Tracy I, Henderson I, Chiecchio L, Larrayoz M, et al. Surface IgM expression and function associate with clinical behavior, genetic abnormalities and DNA methylation in CLL. Blood. 2016;128:816–26.

    Article  Google Scholar 

  8. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118:4313–20.

    Article  CAS  Google Scholar 

  9. Kipps TJ. The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best Pract Res Clin Haematol. 2007;20:415–24.

    Article  CAS  Google Scholar 

  10. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015;94:193–205.

    Article  CAS  Google Scholar 

  11. Cui B, Chen L, Zhang S, Mraz M, Fecteau J-F, Yu J, et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014;124:546–54.

    Article  CAS  Google Scholar 

  12. Nakade K, Zheng H, Ganguli G, Buchwalter G, Gross C, Wasylyk B. The tumor suppressor p53 inhibits Net, an effector of Ras/extracellular signal-regulated kinase signaling. Mol Cell Biol. 2004;24:1132–42.

    Article  CAS  Google Scholar 

  13. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, et al. Regulation of PTEN transcription by p53. Mol Cell. 2001;8:317–25.

    Article  CAS  Google Scholar 

  14. Elston R, Inman GJ. Crosstalk between p53 and TGF- β Signalling. J Signal Transduct. 2012;2012:1–10.

    Article  Google Scholar 

  15. Mraz M, Chen L, Rassenti LZ, Ghia EM, Li H, Jepsen K, et al. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood. 2014;124:84.

    Article  CAS  Google Scholar 

  16. Barrans SL, Fenton JAL, Banham A, Owen RG, Jack AS. Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood. 2004;104:2933–5.

    Article  CAS  Google Scholar 

  17. Sagaert X, de Paepe P, Libbrecht L, Vanhentenrijk V, Verhoef G, Thomas J, et al. Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:2490–7.

    Article  CAS  Google Scholar 

  18. Brown P, Marafioti T, Kusec R, Banham AH. The FOXP1 transcription factor is expressed in the majority of follicular lymphomas but is rarely expressed in classical and lymphocyte predominant hodgkin’s lymphoma. J Mol Histol. 2005;36:249–56.

    Article  CAS  Google Scholar 

  19. van Keimpema M, Grüneberg LJ, Mokry M, van Boxtel R, Koster J, Coffer PJ, et al. FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells. Blood. 2014;124:3431–40.

    Article  Google Scholar 

  20. Dekker JD, Park D, Shaffer AL, Kohlhammer H, Deng W, Lee B-K, et al. Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1. Proc Natl Acad Sci USA. 2016;113:E577–E586.

    Article  CAS  Google Scholar 

  21. van Keimpema M, Grüneberg LJ, Schilder-Tol EJM, Oud MECM, Beuling EA, Hensbergen PJ, et al. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica. 2017;102:573–83.

    Article  Google Scholar 

  22. Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, et al. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal. 2015;8:ra12. nor

    Article  Google Scholar 

  23. Sagardoy A, Martinez-Ferrandis JI, Roa S, Bunting KL, Aznar MA, Elemento O, et al. Downregulation of FOXP1 is required during germinal center B-cell function. Blood. 2013;121:4311–20.

    Article  CAS  Google Scholar 

  24. van Boxtel R, Gomez-Puerto C, Mokry M, Eijkelenboom A, van der Vos KE, Nieuwenhuis EE, et al. FOXP1 acts through a negative feedback loop to suppress FOXO-induced apoptosis. Cell Death Differ. 2013;20:1219–29.

    Article  Google Scholar 

  25. Flori M, Schmid CA, Sumrall ET, Tzankov A, Law CW, Robinson MD, et al. The hematopoietic oncoprotein FOXP1 promotes tumor cell survival in diffuse large B-cell lymphoma by repressing S1PR2 signaling. Blood. 2016;127:1438–48.

    Article  CAS  Google Scholar 

  26. Musilova K, Mraz M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia. 2015;29:1004–17.

    Article  CAS  Google Scholar 

  27. Mraz M, Kipps TJ. MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54:1836–9.

    Article  CAS  Google Scholar 

  28. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847–59.

    Article  CAS  Google Scholar 

  29. Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, et al. MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood. 2012;119:2110–3.

    Article  CAS  Google Scholar 

  30. Mraz M, Malinova K, Kotaskova J, Pavlova S, Tichy B, Malcikova J, et al. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia. 2009;23:1159–63.

    Article  CAS  Google Scholar 

  31. Zenz T, Mohr J, Eldering E, Kater AP, Bühler A, Kienle D, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009;113:3801–8.

    Article  CAS  Google Scholar 

  32. Asslaber D, Pinon JD, Seyfried I, Desch P, Stocher M, Tinhofer I, et al. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood. 2010;115:4191–7.

    Article  CAS  Google Scholar 

  33. Dufour A, Palermo G, Zellmeier E, Mellert G, Duchateau-Nguyen G, Schneider S, et al. Inactivation of TP53 correlates with disease progression and low miR-34a expression in previously treated chronic lymphocytic leukemia patients. Blood. 2013;121:3650–7.

    Article  CAS  Google Scholar 

  34. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100:4609–14.

    Article  CAS  Google Scholar 

  35. Mottok A, Jurinovic V, Farinha P, Rosenwald A, Leich E, Ott G, et al. FOXP1 expression is a prognostic biomarker in follicular lymphoma treated with rituximab and chemotherapy. Blood. 2018;131:226–35.

    Article  CAS  Google Scholar 

  36. Banham AH, Connors JM, Brown PJ, Cordell JL, Ott G, Sreenivasan G, et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res J Am Assoc Cancer Res. 2005;11:1065–72.

    CAS  Google Scholar 

  37. Brown PJ, Ashe SL, Leich E, Burek C, Barrans S, Fenton JA, et al. Potentially oncogenic B-cell activation–induced smaller isoforms of FOXP1 are highly expressed in the activated B cell–like subtype of DLBCL. Blood. 2008;111:2816–24.

    Article  CAS  Google Scholar 

  38. Cejkova S, Rocnova L, Potesil D, Smardova J, Novakova V, Chumchalova J, et al. Presence of heterozygous ATM deletion may not be critical in the primary response of chronic lymphocytic leukemia cells to fludarabine. Eur J Haematol. 2009;82:133–42.

    Article  CAS  Google Scholar 

  39. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.

    Article  CAS  Google Scholar 

  40. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236.

    Article  CAS  Google Scholar 

  41. Vinall RL, Ripoll AZ, Wang S, Pan C-X, deVere White RW. MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status. Int J Cancer. 2012;130:2526–38.

    Article  CAS  Google Scholar 

  42. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995;9:935–44.

    Article  CAS  Google Scholar 

  43. Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016;18:777–89.

    Article  CAS  Google Scholar 

  44. Nitschke L, Carsetti R, Ocker B, Köhler G, Lamers MC. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol. 1997;7:133–43.

    Article  CAS  Google Scholar 

  45. Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114:2589–97.

    Article  CAS  Google Scholar 

  46. Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55:623–31.

    Article  CAS  Google Scholar 

  47. Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol. 2010;130:1249–57.

    Article  CAS  Google Scholar 

  48. Kato S, Han S-Y, Liu W, Otsuka K, Shibata H, Kanamaru R, et al. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100:8424–9.

    Article  CAS  Google Scholar 

  49. Pulikkan JA, Peramangalam PS, Dengler V, Ho PA, Preudhomme C, Meshinchi S, et al. C/EBP regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood. 2010;116:5638–49.

    Article  CAS  Google Scholar 

  50. Wang LQ, Kwong YL, Wong KF, Kho CSB, Jin DY, Tse E, et al. Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med. 2014;12:52.

    Article  CAS  Google Scholar 

  51. Craig VJ, Cogliatti SB, Imig J, Renner C, Neuenschwander S, Rehrauer H, et al. Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood. 2011;117:6227–36.

    Article  CAS  Google Scholar 

  52. Jens M, Rajewsky N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet. 2015;16:113–26.

    Article  CAS  Google Scholar 

  53. Deneberg S, Kanduri M, Ali D, Bengtzen S, Karimi M, Qu Y, et al. microRNA-34b/c on chromosome 11q23 is aberrantly methylated in chronic lymphocytic leukemia. Epigenetics. 2014;9:910–7.

    Article  CAS  Google Scholar 

  54. Bader AG. miR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet Front Genet. 2012;3:120.

    CAS  PubMed  Google Scholar 

  55. Le Garff-Tavernier M, Blons H, Nguyen-Khac F, Pannetier M, Brissard M, Gueguen S, et al. Functional assessment of p53 in chronic lymphocytic leukemia. Blood Cancer J. 2011;1:e5–e5.

    Article  Google Scholar 

  56. Pozzo F, Dal BoM, Peragine N, Bomben R, Zucchetto A, Rossi FM, et al. Detection of TP53 dysfunction in chronic lymphocytic leukemia by an in vitro functional assay based on TP53 activation by the non-genotoxic drug Nutlin-3: a proposal for clinical application. J Hematol Oncol J Hematol Oncol. 2013;6:83.

    Article  Google Scholar 

  57. te Raa GD, Malcikova J, Mraz M, Trbusek M, Garff-Tavernier L, Merle-Beral H, et al. Assessment of TP53 functionality in chronic lymphocytic leukaemia by different assays; an ERIC-wide approach. Br J Haematol. 2014;167:565–9.

    Article  Google Scholar 

  58. te Raa GD, Moerland PD, Leeksma AC, Derks IA, Yigittop H, Laddach N, et al. Assessment of p53 and ATM functionality in chronic lymphocytic leukemia by multiplex ligation-dependent probe amplification. Cell Death Dis. 2015;6:e1852–e1852.

    Article  Google Scholar 

  59. Urgard E, Brjalin A, Langel Ü, Pooga M, Rebane A, Annilo T. Comparison of peptide- and lipid-based delivery of miR-34a-5p Mimic into PPC-1 Cells. Nucleic Acid Ther. 2017;27:295–302.

    Article  CAS  Google Scholar 

  60. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19:1116–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (project No. 16-13334Y), the MUNI/A/0968/2017 with the support of the Specific University Research Grant, as provided by the Ministry of Education, Youth and Sports of the Czech Republic and financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601). This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 692298. This article reflects only the author’s view and the Research Executive Agency is not responsible for any use that may be made of the information it contains.

Author contributions

K.C. performed experiments, analysed data and wrote the paper; V.C., K.M. and G.P. performed experiments; V.S. interpreted the data; J.O. and L.R. analysed the data; M.A. and R.A.C. performed Illumina NGS sequencing; other co-authors provided patients’ samples, clinical data and interpreted data, M.M. designed the study, interpreted data and wrote the paper. All authors edited and approved the paper for submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Mraz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerna, K., Oppelt, J., Chochola, V. et al. MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia 33, 403–414 (2019). https://doi.org/10.1038/s41375-018-0230-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0230-x

Search

Quick links