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Chronic lymphocytic leukemia (CLL) is the most common
adult leukemia in Western countries, which is characterized

by the accumulation of mature CD5+/CD20lo/CD23+ clonal
B-cells in peripheral blood (PB), bone marrow (BM), and
other lymphoid tissues [1]. Currently, it is well-established
that CLL is systematically preceded by a pre-leukemic
stage, known as monoclonal B-cell lymphocytosis (MBL)
[2]; MBL includes both low-count (MBLlo) and high-count
MBL (MBLhi), depending on the number of PB clonal B-
cells (<0.5 × 109/L and ≥0.5 × 109/L, respectively) detected
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[3], the former being a highly prevalent condition in adults
(≈25% of individuals >70 y) [4, 5]. The biological and
clinical significance of CLL-like clonal B-cells in PB of
otherwise healthy individuals (MBLlo) has not been fully
elucidated [6–8]. Recently, we have reported a very low rate
of transformation of MBLlo to MBLhi/CLL, after 7 years of
follow-up [8]. In contrast, we found a higher frequency of
deaths in MBLlo subjects vs. age- and sex-matched non-
MBL healthy adults from the same geographical area;
among the former subjects, infection was an over-
represented cause of death (21% vs. 2%, respectively) [8].
This is in line with previous studies showing an ≈3-fold
increased risk of infection in both MBLhi and CLL patients,
in whom infections also represent a major cause of death [9,
10].

Altogether, the above findings suggest an impaired
immune system and immune surveillance, already at very
early CLL stages. So far, several immunological defects of
both the innate and adaptive compartments of the immune
system have been reported in CLL, including hypo-
gammaglobulinemia and an impaired T- and NK-cell
function [10]. However, the precise mechanisms that lead
to this CLL-associated secondary immunodeficiency state
still remain poorly understood, and little is known about the
specific (pre-leukemic) stage of onset of the impaired
immune response. Since hypogammaglobulinemia is one of
the most common and relevant alterations involved in the
secondary immunodeficiency of most CLL patients, here we
investigated the composition of the residual normal PB B-
cell compartment in both MBLlo and MBLhi vs. early (Rai
stage 0) CLL, to gain insight into the mechanisms involved
in hypogammaglobulinemia in CLL, and the precise stage at
which the first alterations occur.

Overall, 110 subjects—61 males (55%) and 49 females
(45%); mean age: 72 ± 11 y—were prospectively enrolled in
this study between January 2015 and June 2017, with no
seasonal differences in recruitment for the distinct groups
analyzed. Subjects were classified into: controls (40 non-
MBLlo healthy adults), MBLlo (n= 27), MBLhi (n= 21),
and CLL stage 0 (CLL-0) patients (n= 22). Identification
and characterization of residual normal PB B-cells and
quantitation of immunoglobulin (Ig) levels was performed
using high-sensitivity flow cytometry and nephelometry/
turbidimetry, respectively. Inclusion criteria, flow cyto-
metry protocols, panels and reagents, as well as the
immunophenotypic criteria used for the identification of the
different PB B-cell subsets, together with the clinical and
biological characteristics of all individuals analyzed, are
detailed in Supplementary Methods, Supplementary
Tables 1–4, and Supplementary Figure 1.

Overall, both MBLhi and CLL-0 patients showed sig-
nificantly reduced normal PB B-cell counts (Fig. 1a), at the
expense of pre-germinal center (GC) (immature and naïve)
B-cells (P ≤ 0.001; Fig. 1b), while no significant differences
were observed in MBL and CLL-0 vs. non-MBL controls
regarding total PB memory B cells (MBC) (Fig. 1c). In turn,
the overall PB plasma cell (PC) compartment was sig-
nificantly reduced (vs. controls) among MBLhi subjects (P
= 0.002), but not in CLL and MBLlo cases (Fig. 1c). These
results confirm and extend on previous findings from our
group showing that production and release of both imma-
ture and naïve B-cells into PB is already reduced in MBL
[11]. Currently, it is well-established that during adulthood,
PB MBC and PC counts (but neither PB immature nor naïve
B-cell numbers) progressively decrease with age [12];
therefore, age alone could not explain the lower pre-GC B-
cell counts reported here among MBLhi and CLL-0 cases,

Fig. 1 Distribution of normal residual B-cells and their major subsets
in peripheral blood of MBL and CLL cases vs. non-MBL controls. a
The absolute number of residual normal B-cells. b The absolute
number of pre-germinal center B-cells; white boxes represent imma-
ture B-cells (left Y-axis scale), while gray boxes represent naïve B-
cells (right Y-axis scale). c The absolute number of antigen-
experienced B-cells; white boxes represent plasma cells (left Y-axis
scale), while gray boxes represent memory B-cells (right Y-axis scale).

In all panels, notched boxes represent 25th and 75th percentile values;
the lines in the middle correspond to median values and vertical lines
represent the highest and lowest values that are neither outliers nor
extreme values. *P ≤ 0.05 vs. controls; **P ≤ 0.01 vs. controls; ***P ≤
0.001 vs. controls. MBLlo low-count monoclonal B-cell lymphocy-
tosis, MBLhi high-count monoclonal B-cell lymphocytosis, CLL
chronic lymphocytic leukemia

2702 Brief Communication



also because a similar age distribution was observed among
all groups analyzed (Supplementary Table 4; Supplemen-
tary Figure 2). Conversely, the decreased numbers of pre-
GC B-cells in PB of MBLhi subjects suggests an impaired
production of (newly generated) B-cells in the BM, already
at the earliest disease stages. This might be due to a
decreased number of available BM niches, as soon as they
are (progressively) occupied by CD5+ CLL-like clonal B-
cells. Thus, previous studies have suggested that BM
infiltration by CLL cells displaces other resident cell
populations (e.g., normal B-cell precursors), and generates
an impaired hematopoietic microenvironment [13]. Inter-
estingly, BM infiltration at early disease stages might

preferentially affect the B-cell niches, since (by definition)
no other cytopenias were observed in MBL and CLL-0
patients. BM analyses would then become crucial to better
understand the underlying B-cell depletion mechanisms in
these subjects; due to ethical reasons and the lack of med-
ical indication for BM sampling in MBL, BM samples were
not collected here. However, if the above hypothesis holds
true, decreased BM production of B-lymphocytes, in the
transition from MBLlo to MBLhi and CLL, would probably
translate into a progressively narrower B-cell repertoire and
progressively lower coverage of all required antigen speci-
ficities and, thereby, to defective (new) B-cell responses
against specific pathogens, as recently reported for

Fig. 2 Distribution of PB
antigen-experienced B-cell
subsets expressing distinct Ig-
subclasses and soluble Ig-
subclass plasma titers grouped
according to the position they
occupy in the IGHC gene
blocks. a, b The absolute
number of IgM+ and switched
plasma cells, respectively. c, d
The absolute number of IgMD+

un-switched memory B-cells
and switched memory B-cells
are displayed, respectively. e, f
Soluble IgM titers in plasma and
the sum of the soluble levels of
the different switched Ig-
subclasses according to the
distinct position that they
occupy in the IGHC gene,
respectively. b, c, and f White
boxes represent the sum of those
Ig-subclasses encoded in the
second IGHC gene block, while
gray boxes represent the sum of
those Ig-subclasses encoded in
the third IGHC gene block. The
relative position and order of the
different gene segments of the
IGHC gene that encode for the
different Ig-subclasses are
depicted on the top of the figure.
Notched boxes represent 25th
and 75th percentile values; the
lines in the middle correspond to
median values and vertical lines
represent the highest and lowest
values that are neither outliers
nor extreme values; *P ≤ 0.05
vs. controls; **P ≤ 0.01 vs.
controls; ***P ≤ 0.001 vs.
controls. MBLlo low-count
monoclonal B-cell
lymphocytosis, MBLhi high-
count monoclonal B-cell
lymphocytosis, CLL chronic
lymphocytic leukemia
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pneumococcus [14]. Further IGH repertoire analyses of
purified normal pre-GC B-cell subsets from both MBL and
CLL subjects are required to fully confirm this hypothesis.

Although total PB PC numbers were only reduced in
MBLhi and no statistically significant differences were
observed in total MBC counts among the groups here stu-
died, an altered distribution of B-cell subsets expressing
distinct Ig-subclasses was observed among both antigen-
experienced B-cell populations in MBL and CLL (Fig. 2).
Such altered distribution was progressively more marked
from MBLlo to MBLhi and CLL-0. Thus, while in MBLlo

only slightly decreased IgM+ PC counts were found in the
PB (P= 0.05; Supplementary Figure 2A), together with
normal MBC and Ig levels (Fig. 2c,d; Supplementary Fig-
ure 4 and Supplementary Figure 5), MBLhi subjects showed
reduced numbers of PC populations of all Ig-subclass
(Fig. 2a,b), except IgG3+ PC (Supplementary Figure 3B),
together with lower numbers of IgG3+ and IgG4+ MBC
(Supplementary Figure 4B and 4F). In turn, CLL-0 patients
showed decreased IgM+, IgG2+, IgG4+, and IgA2+ PC
counts (Supplementary Figure 3) and low IgG2+, IgG4+,
and IgA2+ MBC numbers (Supplementary Figure 4), which
translates into overall decreased numbers of PCs and MBCs
expressing those Ig-subclasses encoded downstream in the
IGHC gene (Fig. 2b). Of note, no seasonal differences
existed in recruitment among the four study groups, sug-
gesting that differences in PC and MBC subset numbers
were not influenced by seasonal changes.

Regarding plasma Ig titers, soluble IgM levels were
significantly reduced in both MBLhi (P= 0.03) and CLL-0
(P= 0.008) (Fig. 2e); in addition, MBLhi showed reduced
IgG2 and IgG4 soluble levels (Supplementary Figure 5C-E)
while CLL-0 patients displayed overall decreased plasma
levels of all IgG-subclasses (P ≤ 0.02), particularly also of
those encoded downstream in the IGHC gene (i.e., IgG2,
IgG4, and IgA2; P ≤ 0.001; Fig. 2f). Thus, the overall
reduction in soluble IgG titers was mostly at the expense of
Ig-subclasses coded downstream in the third block IGHC
gene, mimicking the altered PC and MBC profiles described
above for the same patients (Supplementary Figure 5).

Altogether, these results suggest that IgM+ PC responses
are already hampered in MBLlo, while they are associated
with different patterns of alteration of other normal residual
antigen-experienced B-cells in MBLhi and CLL-0. Thus,
while in MBLhi almost all PC populations were already
reduced, and only few (decreased IgG3+ and IgG4+ MBC)
alterations were observed in the distribution of the distinct
MBC subpopulations analyzed, a lower number of PC
subsets, together with a greater number of MBC subsets,
were affected in CLL-0. Of note, MBC and PC expressing
Ig-subclasses which are encoded downstream in the IGHC
gene (i.e., IgG2+, IgG4+, and IgA2+) were the only

antigen-experienced B-cell populations decreased in CLL
(Fig. 2a, d).

These later findings point out the existence of a pro-
gressive deterioration of B-cell responses driven by newly
encountered Ags from MBLlo to MBLhi and CLL-0. This is
likely due to an impaired pre-GC B-cell production, that
would lead to a progressively reduced B-cell repertoire,
with decreased production of new Ag-experienced B-cells
from MBLlo to MBLhi and CLL-0. This immunodeficiency
state might explain the previously reported reactivation in
CLL of B-cell responses against common pathogens, par-
ticularly host-viruses such as cytomegalovirus (CMV) and
Epstein Barr virus (EBV) [14]. The regeneration of PB PC
numbers here reported between MBLhi and CLL-0 could be,
thereby, due to such reactivation of antibody responses
against common (dominant) antigens, including new anti-
body responses against CMV and EBV [14]; this is con-
sistent with the apparent recovery of the number of PB PCs
(and also MBCs) expressing Ig-subclasses, which are coded
upstream in the IGHC gene block (i.e., IgG3+, IgG1+, and
IgA1+) as found here for CLL-0 patients. These results
would also support the higher frequency of infections dri-
ven by encapsulated bacteria in MBL and CLL patients,
since IgG2 is the main actor in the humoral defense against
polysaccharide antigens, and it was significantly reduced in
both MBLhi and CLL [15]. Further longitudinal long-term
follow-up studies in larger series of newly diagnosed/
untreated MBL and CLL patients, including functional
antigen-specific PC and MBC in vitro assays, are necessary
to confirm this hypothesis.

Acknowledgements This work was supported by the RD06/0020/
0035 and RD12/0036/0048 grants from Red Temática de Investigación
Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III, Min-
isterio de Economía y Competitividad, (Madrid, Spain and FONDOS
FEDER); CB16/12/00400 and CB16/12/00233 grants, CIBERONC,
Instituto de Salud Carlos III, Ministerio de Economía y Competitivi-
dad, (Madrid, Spain and FONDOS FEDER); the FIS PI06/0824-
FEDER, PS09/02430-FEDER, PI12/00905-FEDER, DTS15/00119-
FEDER, and PI17/00399-FEDER grants, from the Fondo de Investi-
gación Sanitaria of Instituto de Salud Carlos III; the GRS206/A/08
grant (Ayuda al Grupo GR37 de Excelencia, SAN/1778/2009) from
the Gerencia Regional de Salud (Consejería de Educación and Con-
sejería de Sanidad of Castilla y León, Valladolid, Spain). MLG is
supported by grant PTA2014-09963-I from the Instituto de Salud
Carlos III and AR-C is supported by grant CB16/12/00400, Instituto
de Salud Carlos III, Ministerio de Economía y Competitividad. The
authors would like to thank the Spanish National DNA Bank (Banco
Nacional de ADN Carlos III, University of Salamanca) and all the
members of The Primary Health Care Group of Salamanca for the
Study of MBL, here listed (alphabetical order): Alonso Martín, María
Monserrat (C.S. Fuentes de Oñoro); Asensio Oliva, María Carmen (C.
S. Santa Marta de Tormes), Bárez Hernández, Pilar (C.S. Garrido Sur);
Cabo Sastre, Luis (C.S. Garrido Sur); Carreño Luengo, María Teresa
(C.S. Garrido Sur); Casado Romo, José María (C.S. Alba de Tormes);
Cubino Luis, Rocio (C.S. Universidad-Centro); De Vega Parra, José
(C.S. Peñaranda); Franco Esteban, Eloy (C.S. Pizarrales-Vidal); García
García, María Concepción (C.S. Guijuelo); García Rodríguez,

2704 Brief Communication



Bernardo Lucio (C.S. Pizarrales-Vidal); Garzón Martín, Agustín (C.S.
Universidad-Centro); Goenaga Andrés, Rosario (C.S. Ledesma);
Gómez Cabrera, Rosalia (C.S. Miguel Armijo); Gómez Sánchez,
Francisco (C.S. Periurbana Norte); González Moreno, Josefa (C.S.
Béjar); González Vicente, Ángel Carlos (C.S. Linares); Guarido
Mateos, José Manuel (C.S. Vitigudino); Hernández Sánchez, María
Jesús (C.S. Vitigudino); Herraez Martín, Ricardo (C.S. La Alberca);
Herrero Sánchez, Amparo (C.S. Fuentes de Oñoro); Jiménez Ruano,
María Josefa (C.S. Garrido Norte); Jimeno Cascón, Teresa Basa (C.S.
Periurbana Sur); Macías Kuhn, Francisco (C.S. Ledesma); Mateos
Rubio, Pablo (C.S. Ledesma); Márquez Velasco, María Salud (C.S.
Sancti Spiritus); Merino Palazuelo, Miguel (C.S. Garrido Sur); Miguel
Lozano, Rubén (C.S. Garrido Norte); Montero Luengo, Juan (C.S. San
Juan); Muriel Díaz, María Paz (C.S. Miguel Armijo); Pablos Regueiro,
Araceli (C.S. Lumbrales); Pascual Martín, J. Antonio (C.S. Fuentes de
Oñoro); Pastor Alcalá, Luis (C.S. Vitigudino); Pedraza García, Jesús
(C.S. Lumbrales); Pérez Díaz, Manuel (C.S. Pizarrales-Vidal); Pérez
García, Manuel (C.S. Alba de Tormes); Prieto Gutiérrez, María Teresa
(C.S. Peñaranda); Ramos Arranz, Manuel (C.S. Ledesma); Ramos
Mongue, Aurora Esther (C.S. Béjar); Rodríguez Medina, Ana María
(C.S. Alba de Tormes); Rodríguez Vegas, Margarita (C.S. Periurbana
Sur); Romo Cortina, Javier (C.S. Elena Ginel Díez); Elena Roselló,
Carmen (C.S. Villoria); Sánchez Alonso, Begoña (C.S. Pizarrales-
Vidal); Sánchez Bazo, Begoña (C.S. Periurbana Norte), Sánchez
White, Nicolás (C.S. Béjar); Sandín Pérez, Rafael (C.S. San José);
Sanz Santa-Cruz; Fernando (C.S. Capuchinos); Soto Jiménez, Fran-
cisco (C.S. Linares); Velasco Marcos, María Auxiliadora (C.S. Elena
Ginel Díez); Vicente López, Horacio Marcos (C.S. Aldeadávila de la
Ribera); Vicente Santos, M. Sebastián (C.S. Aldeadávila de la Ribera).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Rai KR, Jain P. Chronic lymphocytic leukemia (CLL)-Then and
now. Am J Hematol. 2016;91:330–40.

2. Landgren O, Albitar M, Ma W, Abbasi F, Hayes RB, Ghia P, et al.
B-cell clones as early markers for chronic lymphocytic leukemia.
N Engl J Med. 2009;360:659–67.

3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H,
et al. WHO classification of tumours of haematopoietic and
lymphoid tissues. 4th ed. Lyon, France: IARC; 2017.

4. Nieto WG, Almeida J, Romero A, Teodosio C, Lopez A, Henri-
ques AF, et al. Increased frequency (12%) of circulating chronic
lymphocytic leukemia-like B-cell clones in healthy subjects using
a highly sensitive multicolor flow cytometry approach. Blood.
2009;114:33–7.

5. Almeida J, Nieto WG, Teodosio C, Pedreira CE, Lopez A,
Fernandez-Navarro P, et al. CLL-like B-lymphocytes are sys-
tematically present at very low numbers in peripheral blood of
healthy adults. Leukemia. 2011;25:718–22.

6. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC.
Monoclonal B-cell lymphocytosis (MBL): biology, natural history
and clinical management. Leukemia. 2010;24:512–20.

7. Fazi C, Scarfò L, Pecciarini L, Cottini F, Dagklis A, Janus A,
et al. General population low-count CLL-like MBL persists
over time without clinical progression, although carrying the
same cytogenetic abnormalities of CLL. Blood. 2011;118:
6618–25.

8. Criado I, Rodriguez-Caballero A, Gutierrez ML, Pedreira CE,
Alcoceba M, Nieto W, et al. Low-count monoclonal B-cell lym-
phocytosis persists after 7 years of follow-up and is associated
with a poorer outcome. Haematologica. 2018. https://doi.org/10.
3324/haematol.2017.183954.

9. Moreira J, Rabe KG, Cerhan JR, Kay NE, Wilson JW, Call TG,
et al. Infectious complications among individuals with clinical
monoclonal B-cell lymphocytosis (MBL): a cohort study of newly
diagnosed cases compared to controls. Leukemia. 2013;27:136–41.

10. Forconi F, Moss P. Perturbation of the normal immune system in
patients with CLL. Blood. 2015;126:573–81.

11. Hauswirth AW, Almeida J, Nieto WG, Teodosio C, Rodriguez-
Caballero A, Romero A, et al. Monoclonal B-cell lymphocytosis
(MBL) with normal lymphocyte counts is associated with
decreased numbers of normal circulating B-cell subsets. Am J
Hematol. 2012;87:721–4.

12. Blanco E, Perez-Andres M, Arriba-Mendez S, Contreras-
Sanfeliciano T, Criado I, Pelak O, et al. Age-associated distribu-
tion of normal B-cell and plasma cell subsets in peripheral blood. J
Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.
02.017.

13. Fecteau J-F, Kipps TJ. Structure and function of the hematopoietic
cancer niche: focus on chronic lymphocytic leukemia. Front
Biosci (Schol Ed). 2012;4:61–73.

14. Criado I, Munoz-Criado S, Rodriguez-Caballero A, Nieto WG,
Romero A, Fernandez-Navarro P, et al. Host virus and
pneumococcus-specific immune responses in high-count mono-
clonal B-cell lymphocytosis and chronic lymphocytic leukemia:
implications for disease progression. Haematologica.
2017;102:1238–46.

15. Chudwin DS, Artrip SG, Schiffman G. Immunoglobulin G class
and subclass antibodies to pneumococcal capsular poly-
saccharides. Clin Immunol Immunopathol. 1987;44:114–21.

Brief Communication 2705

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3324/haematol.2017.183954
https://doi.org/10.3324/haematol.2017.183954
https://doi.org/10.1016/j.jaci.2018.02.017
https://doi.org/10.1016/j.jaci.2018.02.017



