Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute myeloid leukemia

NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome

Subjects

Abstract

Targeted mutation assessment of 81 genes in 1021 adults with de novo acute myeloid leukemia (AML) identified recurrent mutations in the neurofibromin 1 (NF1) gene in 52 (5.1%) patients, including 36 (5.2%) younger and 16 (4.8%) older patients, which suggests NF1 belongs to the 20 most frequently mutated genes in adult AML. NF1 mutations were found throughout the gene, and comprised missense, frameshift, and nonsense mutations. One mutation hotspot, at amino acid threonine 676 (Thr676), was found in 27% of AML patients with NF1 mutations. NF1-mutated patients belonged more often to the adverse European LeukemiaNet (ELN) risk category than NF1 wild-type patients. Among patients aged <60 years, the presence of NF1 Thr676 mutations was associated with lower complete remission (CR) rates (P = 0.04) and shorter overall survival (OS; P = 0.01), as was the presence of any NF1 mutation in patients in the adverse ELN risk category (CR, P = 0.05; OS, P < 0.001). CR rates were also lower in NF1-mutated patients aged ≥60 years compared with NF1 wild-type patients (P = 0.001). In summary, our findings provide novel insights into the frequency of NF1 mutations in AML, and are suggestive of an adverse prognostic impact in patients treated with standard chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63:851–9.

    Article  CAS  PubMed  Google Scholar 

  2. Buchberg AM, Cleveland LS, Jenkins NA, Copeland NG. Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature. 1990;347:291–4.

    Article  CAS  PubMed  Google Scholar 

  3. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996;12:137–43.

    Article  CAS  PubMed  Google Scholar 

  4. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994;7:353–61.

    Article  CAS  PubMed  Google Scholar 

  5. Hope DG, Mulvihill JJ. Malignancy in neurofibromatosis. Adv Neurol. 1981;29:33–55.

    CAS  PubMed  Google Scholar 

  6. Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M, et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med. 1997;336:1713–20.

    Article  CAS  PubMed  Google Scholar 

  7. Side LE, Emanuel PD, Taylor B, Franklin J, Thompson P, Castleberry RP, et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood. 1998;92:267–72.

    Article  CAS  PubMed  Google Scholar 

  8. Largaespada DA, Shaughnessy JD Jr, Jenkins NA, Copeland NG. Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nf1 expression without changes in steady-state Ras-GTP levels. J Virol. 1995;69:5095–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Bollag G, Clark R, Stevens J, Conroy L, Fults D, et al. Somatic mutations in the neurofibromatosis 1 gene in human tumours. Cell. 1992;69:275–81.

    Article  CAS  PubMed  Google Scholar 

  10. Boudry-Labis E, Roche-Lestienne C, Nibourel O, Boissel N, Terre N, Perot C, et al. Neurofibromatosis-1 gene deletions and mutations in de novo acute myeloid leukemia. Am J Hematol. 2013;4:306–11.

    Article  Google Scholar 

  11. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  PubMed Central  Google Scholar 

  12. Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, et al. NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res. 2010;16:4135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haferlach C, Grossmann V, Kohlmann A, Schindela S, Kern W, Schnittger S, et al. Deletion of tumor suppressor gene NF1 occurs in 5% of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases. Leukemia. 2012;26:834–9.

    Article  CAS  PubMed  Google Scholar 

  14. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolitz JE, George SL, Marcucci G, Vij R, Powell BL, Allen SL, et al. P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients under age 60 years with newly diagnosed acute myeloid leukemia: Cancer and Leukemia Group B study 19808. Blood. 2010;116:1413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blum W, Sanford BL, Klisovic R, DeAngelo DJ, Uy G, Powell BL, et al. Maintenance therapy with decitabine in younger adults with acute myeloid leukemia in first remission: a phase 2 Cancer and Leukemia Group B study (CALGB 10503). Leukemia. 2017;31:34–9.

    Article  CAS  PubMed  Google Scholar 

  17. Baer MR, George SL, Caligiuri MA, Sanford BL, Bothun SM, Mrózek K, et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B study 9720. J Clin Oncol. 2008;26:4934–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolitz JE, George SL, Dodge RK, Hurd DD, Powell BL, Allen SL, et al. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B study 9621. J Clin Oncol. 2004;22:4290–301.

    Article  CAS  PubMed  Google Scholar 

  19. Marcucci G, Moser B, Blum W, Stock W, Wetzler M, Kolitz JE, et al. A phase III randomized trial of intensive induction and consolidation chemotherapy±oblimersen, a pro-apoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients > 60 years old. J Clin Oncol. 2007;25:360s (abstract 7012).

    Article  Google Scholar 

  20. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med. 1994;331:896–903.

    Article  CAS  PubMed  Google Scholar 

  21. Moore JO, George SL, Dodge RK, Amrein PC, Powell BL, Kolitz JE, et al. Sequential multiagent chemotherapy is not superior to high-dose cytarabine alone as postremission intensification therapy for acute myeloid leukemia in adults under 60 years of age: Cancer and Leukemia Group B study 9222. Blood. 2005;105:3420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attar EC, Johnson JL, Amrein PC, Lozanski G, Wadleigh M, DeAngelo DJ, et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J Clin Oncol. 2013;31:923–9.

    Article  CAS  PubMed  Google Scholar 

  24. Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman P, et al. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. N Engl J Med. 1995;332:1671–7.

    Article  CAS  PubMed  Google Scholar 

  25. Moore JO, Dodge RK, Amrein PC, Kolitz J, Lee EJ, Powell B, et al. Granulocyte-colony stimulating factor (filgrastim) accelerates granulocyte recovery after intensive postremission chemotherapy for acute myeloid leukemia with aziridinyl benzoquinone and mitoxantrone: Cancer and Leukemia Group B study 9022. Blood. 1997;89:780–8.

    Article  CAS  PubMed  Google Scholar 

  26. Schiffer CA, Davis RB, Schulman P, Cooper B, Coyle T, Lee E, et al. Intensive post remission therapy of acute myeloid leukemia (AML) with cytoxan/etoposide (CY/VP16) and diazaquone/mitoxantrone (AZQ/MITO). Blood. 1991;78(Suppl.):460 (abstract 1829).

    Google Scholar 

  27. Mrózek K, Carroll AJ, Maharry K, Rao KW, Patil SR, Pettenati MJ, et al. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol. 2008;33:239–44.

    PubMed  Google Scholar 

  28. Eisfeld A-K, Mrózek K, Kohlschmidt J, Nicolet D, Orwick S, Walker CJ, et al. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia. 2017;31:2211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kroll KW, Eisfeld A-K, Lozanski A, Bloomfield CD, Byrd JC, Blachly JS. MuCor: mutation aggregation and correlation. Bioinformatics. 2016;32:1557–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, Paschka P, et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol. 2008;26:5078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Döhner H, Estey E, Grimwade D, Amadori S, Applebaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zighelboim I, Mutch DG, Knapp A, Ding L, Xie M, Cohn DE, et al. High frequency strand slippage mutations in CTCF in MSI-positive endometrial cancers. Hum Mutat. 2014;35:63–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7:818–31.

    Article  Google Scholar 

  34. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang Y-D, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47:1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yin B, Morgan K, Hasz DE, Mao Z, Largaespada DA. Nf1 gene inactivation in acute myeloid leukemia cells confers cytarabine resistance through MAPK and mTOR pathways. Leukemia. 2006;20:151–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients who consented to participate in these clinical trials and the families who supported them; to Donna Bucci and the CALGB/Alliance Leukemia Tissue Bank at The Ohio State University Comprehensive Cancer Center, Columbus, OH, for sample processing and storage services and Lisa J. Sterling and Christine Finks for data management. This work was supported in part by grants from the National Cancer Institute (Bethesda, Maryland, USA) [U10CA180821, U10CA180882 (to the Alliance), P30CA016058, P50CA140158, U10CA003927, U10CA032291, U10CA035279, U10CA047545, U10CA059518, U10CA101140, U10CA180850, U10CA180861, U10CA180866, U10CA180867, and U24CA196171]; the Leukemia Clinical Research Foundation; the Warren D. Brown Foundation; the Pelotonia Fellowship Program (to A-KE); and by an allocation of computing resources from The Ohio Supercomputer Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions

A-KE, KM, JCB, and CDB designed the study. A-KE, KM, AM, CJW, JSB, SEM, AdlC, JCB, and CDB contributed to the data interpretation. A-KE, KM, JK, and CDB wrote the manuscript. JK and DN performed statistical analysis. A-KE and SO performed laboratory-based research. KM, AJC, BLP, JEK, ESW, RMS, JCB, and CDB were involved directly or indirectly in the care of patients and/or sample procurement. All authors reviewed the manuscript and approved its final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ann-Kathrin Eisfeld, Krzysztof Mrózek or Clara D. Bloomfield.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisfeld, AK., Kohlschmidt, J., Mrózek, K. et al. NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia 32, 2536–2545 (2018). https://doi.org/10.1038/s41375-018-0147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0147-4

This article is cited by

Search

Quick links