Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

We skip to work: alternative splicing in normal and malignant myelopoiesis

Abstract

Alternative splicing expands the transcriptome thereby promoting protein diversity. It governs critical cellular processes such as differentiation, proliferation and apoptosis in a tissue-specific manner. Aberrant splicing consequent to mutations in splicing factors and disruption of isoform ratios in key regulatory genes provides an important contribution to the pathogenesis of the myelodysplastic syndromes and myeloid leukemia. We review here the central role of alternative splicing in regulating myelopoiesis, and provide clear examples of how global splicing disruption or specific aberrant splicing events might promote leukemogenesis. We discuss the growing number of mechanistic links between epigenetic factors and alternative splicing. Finally, we address the potential utility of alternatively spliced isoforms as biomarkers and the development of novel therapies that modulate alternative splicing in myeloid and other malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet. 2011;12:715–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell. 2003;12:5–14.

    Article  CAS  PubMed  Google Scholar 

  4. Sibley CR, Blazquez L, Ule J. Lessons from non-canonical splicing. Nat Rev Genet. 2016;17:407–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu X-D, Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15:689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31:274–80.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res. 2014;42:701–13.

    Article  CAS  PubMed  Google Scholar 

  8. Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG, Odom DT, et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 2011;21:390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345:1251033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ohlsson E, Schuster MB, Hasemann M, Porse BT. The multifaceted functions of C/EBPα in normal and malignant haematopoiesis. Leukemia. 2016;30:767–75.

    Article  CAS  PubMed  Google Scholar 

  11. Francis OL, Payne JL, Su R-J, Payne KJ. Regulator of myeloid differentiation and function: the secret life of Ikaros. World J Biol Chem. 2011;2:119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qiu J, Zhou B, Thol F, Zhou Y, Chen L, Shao C, et al. Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators. RNA. 2016;22:1535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell. 2015;163:1663–77.

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez RN, El-Ali NC, Mager MA, Wyman D, Conesa A, Mortazavi A. Dynamic gene regulatory networks of human myeloid differentiation. Cell Syst. 2017;4:416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis KL. Ikaros: master of hematopoiesis, agent of leukemia. Ther Adv Hematol. 2011;2:359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshida T, Ng SY-M, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.

    Article  CAS  PubMed  Google Scholar 

  17. Malinge S, Thiollier C, Chlon TM, Doré LC, Diebold L, Bluteau O, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood. 2013;121:2440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Payne KJ, Huang G, Sahakian E, Zhu JY, Barteneva NS, Barsky LW, et al. Ikaros isoform x is selectively expressed in myeloid differentiation. J Immunol. 2003;170:3091–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol. 2015;16:665–77.

    Article  CAS  PubMed  Google Scholar 

  20. Wong JJ-L, Ritchie W, Ebner OA, Selbach M, Wong JWH, Huang Y, et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell. 2013;154:583–95.

    Article  CAS  PubMed  Google Scholar 

  21. Pimentel H, Parra M, Gee S, Ghanem D, An X, Li J, et al. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2014;42:4031–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2016;44:838–51.

    Article  CAS  PubMed  Google Scholar 

  23. Edwards CR, Ritchie W, Wong JJ-L, Schmitz U, Middleton R, An X, et al. A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. Blood. 2016;127:24–35.

    Article  CAS  Google Scholar 

  24. Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 2014;24:1774–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacob AG, Smith CWJ. Intron retention as a component of regulated gene expression programs. Hum Genet. 2017;136:1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med. 2012;18:472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  28. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.

    Article  CAS  PubMed  Google Scholar 

  29. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malcovati L, Cazzola M. Recent advances in the understanding of myelodysplastic syndromes with ring sideroblasts. Br J Haematol. 2016;174:847–58.

    Article  CAS  PubMed  Google Scholar 

  31. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120:3080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang S-J, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119:4480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu S-J, Kuo Y-Y, Hou H-A, Li L-Y, Tseng M-H, Huang C-F, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120:3106–11.

    Article  CAS  PubMed  Google Scholar 

  34. Wu S-J, Tang J-L, Lin C-T, Kuo Y-Y, Li L-Y, Tseng M-H, et al. Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 2013;88:E277–82.

    Article  CAS  PubMed  Google Scholar 

  35. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hou H-A, Liu C-Y, Kuo Y-Y, Chou W-C, Tsai C-H, Lin C-C, et al. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget. 2016;7:9084–101.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Will CL, Schneider C, MacMillan AM, Katopodis NF, Neubauer G, Wilm M, et al. A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J. 2001;20:4536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 2015;13:1033–45.

    Article  CAS  PubMed  Google Scholar 

  39. Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016;30:2322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okeyo-Owuor T, White BS, Chatrikhi R, Mohan DR, Kim S, Griffith M, et al. U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing. Leukemia. 2015;29:909–17.

    Article  CAS  PubMed  Google Scholar 

  41. Ilagan JO, Ramakrishnan A, Hayes B, Murphy ME, Zebari AS, Bradley P, et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 2015;25:14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Madan V, Kanojia D, Li J, Okamoto R, Sato-Otsubo A, Kohlmann A, et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun. 2015;6:6042.

    Article  CAS  PubMed  Google Scholar 

  43. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC-W, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119:3211–8.

    Article  CAS  PubMed  Google Scholar 

  45. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Obeng EA, Chappell RJ, Seiler M, Chen MC, Campagna DR, Schmidt PJ, et al. Physiologic expression of SF3B1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell. 2016;30:404–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell. 2015;27:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hasegawa N, Oshima M, Sashida G, Matsui H, Koide S, Saraya A, et al. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome. Leukemia. 2017;31:861–71.

    Article  CAS  PubMed  Google Scholar 

  49. Inoue D, Abdel-Wahab O. Modeling SF3B1 mutations in cancer: advances, challenges, and opportunities. Cancer Cell. 2016;30:371–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adamia S, Haibe-Kains B, Pilarski PM, Bar-Natan M, Pevzner S, Avet-Loiseau H, et al. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets. Clin Cancer Res. 2014;20:1135–45.

    Article  CAS  PubMed  Google Scholar 

  51. Schwerk C, Schulze-Osthoff K. Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell. 2005;19:1–13.

    Article  CAS  PubMed  Google Scholar 

  52. Vo T-T, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012;151:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goff DJ, Recart AC, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, et al. A pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12:316–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Necochea-Campion R, Shouse GP, Zhou Q, Mirshahidi S, Chen C-S. Aberrant splicing and drug resistance in AML. J Hematol Oncol. 2016;9:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Veuger MJ, Honders MW, Landegent JE, Willemze R, Barge RM. High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood. 2000;96:1517–24.

    Article  CAS  PubMed  Google Scholar 

  56. Rathe SK, Moriarity BS, Stoltenberg CB, Kurata M, Aumann NK, Rahrmann EP, et al. Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia. Sci Rep. 2014;4:6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krawczak M, Thomas NST, Hundrieser B, Mort M, Wittig M, Hampe J, et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat. 2007;28:150–8.

    Article  CAS  PubMed  Google Scholar 

  58. Jung H, Lee D, Lee J, Park D, Kim YJ, Park W-Y, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47:1242–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dvinge H, Bradley RK. Widespread intron retention diversifies most cancer transcriptomes. Genome Med. 2015;7:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Guillamot M, Cimmino L, Aifantis I.The impact of DNA methylation in hematopoietic malignancies. Trends Cancer. 2016;2:70–83.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015;15:152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chou W-C, Chou S-C, Liu C-Y, Chen C-Y, Hou H-A, Kuo Y-Y, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118:3803–10.

    Article  CAS  PubMed  Google Scholar 

  63. Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127:42–52.

    Article  CAS  PubMed  Google Scholar 

  64. Diesch J, Zwick A, Garz A-K, Palau A, Buschbeck M, Götze KS. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wong JJ-L, Lau KA, Pinello N, Rasko JEJ. Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia. Cancer Sci. 2014;105:1457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. LeRoy G, Rickards B, Flint SJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell. 2008;30:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hnilicová J, Hozeifi S, Dušková E, Icha J, Tománková T, Staněk D. Histone deacetylase activity modulates alternative splicing. PLoS One. 2011;6:e16727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23:1256–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marina RJ, Sturgill D, Bailly MA, Thenoz M, Varma G, Prigge MF, et al. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J. 2016;35:335–55.

    Article  CAS  PubMed  Google Scholar 

  70. Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O, Mallm J-P, et al. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 2015;10:1122–34.

    Article  CAS  PubMed  Google Scholar 

  71. Wong JJ-L, Gao D, Nguyen TV, Kwok C-T, van Geldermalsen M, Middleton R, et al. Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun. 2017;8:15134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69:8127–32.

    Article  CAS  PubMed  Google Scholar 

  73. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  75. Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169:824–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.

    Article  PubMed  CAS  Google Scholar 

  77. Kwok C-T, Marshall AD, Rasko JEJ, Wong JJL. Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol. 2017;10:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shen S, Wang Y, Wang C, Wu YN, Xing Y. SURVIV for survival analysis of mRNA isoform variation. Nat Commun. 2016;7:11548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, et al. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 2017;393:40–51.

    Article  CAS  PubMed  Google Scholar 

  80. Camacho Londoño J, Philipp SE. A reliable method for quantification of splice variants using RT-qPCR. BMC Mol Biol. 2016;17:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9:e78644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P, et al. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017;18:443.

    Article  CAS  Google Scholar 

  83. Teng M, Love MI, Davis CA, Djebali S, Dobin A, Graveley BR, et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 2016;17:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gerstung M, Papaemmanuil E, Martincorena I, Bullinger L, Gaidzik VI, Paschka P, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet. 2017;49:332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdiscip Rev RNA. 2017;8:e1381.

  86. León B, Kashyap MK, Chan WC, Krug KA, Castro JE, La Clair JJ, et al. A challenging pie to splice: drugging the spliceosome. Angew Chem Int Ed. 2017;56:12052–63.

    Article  CAS  Google Scholar 

  87. Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22:672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hsu TY-T, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015;525:384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salvatori B, Iosue I, Djodji Damas N, Mangiavacchi A, Chiaretti S, Messina M, et al. Critical role of c-Myc in acute myeloid leukemia involving direct regulation of miR-26a and histone methyltransferase EZH2. Genes Cancer. 2011;2:585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Massiello A, Roesser JR, Chalfant CE. SAP155 Binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5’ splice site selection of Bcl-x pre-mRNA. FASEB J. 2006;20:1680–2.

    Article  CAS  PubMed  Google Scholar 

  91. Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicing network links cell-cycle control to apoptosis. Cell. 2010;142:625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao Y, Koide K. Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem Biol. 2013;8:895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kashyap MK, Kumar D, Villa R, La Clair JJ, Benner C, Sasik R, et al. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica. 2015;100:945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crews LA, Balaian L, Delos Santos NP, Leu HS, Court AC, Lazzari E, et al. RNA splicing modulation selectively impairs leukemia stem cell maintenance in secondary human AML. Cell Stem Cell. 2016;19:599–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs. 2014;32:436–44.

    Article  CAS  PubMed  Google Scholar 

  96. Eskens FALM, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJA, et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19:6296–304.

    Article  CAS  PubMed  Google Scholar 

  97. O’Brien K, Matlin AJ, Lowell AM, Moore MJ. The biflavonoid isoginkgetin is a general inhibitor of pre-mRNA splicing. J Biol Chem. 2008;283:33147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Heinhuis B, Plantinga TS, Semango G, Küsters B, Netea MG, Dinarello CA, et al. Alternatively spliced isoforms of IL-32 differentially influence cell death pathways in cancer cell lines. Carcinogenesis. 2016;37:197–205.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou Z, Fu X-D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma. 2013;122:191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Siqueira RP, Barbosa ÉDAA, Polêto MD, Righetto GL, Seraphim TV, Salgado RL, et al. Potential antileukemia effect and structural analyses of SRPK inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl) isonicotinamide (SRPIN340). PLoS ONE. 2015;10:1–21.

    Article  CAS  Google Scholar 

  101. McClorey G, Fall AM, Moulton HM, Iversen PL, Rasko JE, Ryan M, et al. Induced dystrophin exon skipping in human muscle explants. Neuromuscul Disord. 2006;16:583–90.

    Article  CAS  PubMed  Google Scholar 

  102. Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74:637–47.

    Article  CAS  PubMed  Google Scholar 

  103. Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, et al. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther. 2014;25:587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berger A, Maire S, Gaillard M-C, Sahel J-A, Hantraye P, Bemelmans A-P. mRNA trans-splicing in gene therapy for genetic diseases. Wiley Interdiscip Rev RNA. 2016;7:487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. He X, Liu F, Yan J, Zhang Y, Yan J, Shang H, et al. Trans-splicing repair of mutant p53 suppresses the growth of hepatocellular carcinoma cells in vitro and in vivo. Sci Rep. 2015;5:8705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moreno PMD, Pêgo AP. Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front Chem. 2014;2:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wagner M, Schmelz K, Wuchter C, Ludwig W-D, Dörken B, Tamm I. In vivo expression of survivin and its splice variant survivin-2B: impact on clinical outcome in acute myeloid leukemia. Int J Cancer. 2006;119:1291–7.

    Article  CAS  PubMed  Google Scholar 

  108. Mehta HM, Futami M, Glaubach T, Lee DW, Andolina JR, Yang Q, et al. Alternatively spliced, truncated GCSF receptor promotes leukemogenic properties and sensitivity to JAK inhibition. Leukemia. 2014;28:1041–51.

    Article  CAS  PubMed  Google Scholar 

  109. Theocharides APA, Dobson SM, Laurenti E, Notta F, Voisin V, Cheng P-Y, et al. Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts. Leukemia. 2015;29:177–87.

    Article  CAS  PubMed  Google Scholar 

  110. Shemesh A, Brusilovsky M, Hadad U, Teltsh O, Edri A, Rubin E, et al. Survival in acute myeloid leukemia is associated with NKp44 splice variants. Oncotarget. 2016;7:32933–45.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med. 2006;12:945–9.

    Article  CAS  PubMed  Google Scholar 

  112. Calvello C, Rocca B, Klersy C, Zappatore R, Giardini I, Dambruoso I, et al. Alternative splicing of hTERT: a further mechanism for the control of active hTERT in acute myeloid leukemia. Leuk Lymphoma. 2017;59:702–9.

    Article  PubMed  CAS  Google Scholar 

  113. Wu Y, Su M, Zhang S, Cheng Y, Liao XY, Lin BY, et al. Abnormal expression of TGF-beta type II receptor isoforms contributes to acute myeloid leukemia. Oncotarget. 2017;8:10037–49.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

JEJR and JJ-LW received funding from by the National Health and Medical Research Council (Grant #1061906 to JEJR, #1129901, #1080530, #1128175 to JEJR and JJ-LW, and #1126306 to JJ-LW.) JEJR was funded by Cure the Future and an anonymous foundation. JJ-LW is a Cancer Institute of New South Wales Fellow.

Author contributions

ACHW and JJ-LW conceived the ideas and structure of the review. ACHW, JEJR JJ-LW were involved in critical analysis of data, writing and revision. All authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin J.-L. Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, A.C.H., Rasko, J.E.J. & Wong, J.JL. We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia 32, 1081–1093 (2018). https://doi.org/10.1038/s41375-018-0021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0021-4

This article is cited by

Search

Quick links