Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelodysplastic syndrome

Utx loss causes myeloid transformation

Abstract

Recurrent somatic loss-of-function mutations in histone demethylases are frequently detected in cancer. However, whether loss of a histone demethylase can cause cancer has not been determined. Here, we report that knockout of the histone demethylase Utx in mice causes a chronic myelomonocytic leukemia (CMML)-like disease with splenomegaly, monocytosis, and extramedullary hematopoiesis. Mutational analysis of patient data indicated that UTX mutations occur simultaneously with TP53 mutations in myeloid malignancies, and combined inactivation of Utx and Trp53 accelerated the development of CMML in a cell-autonomous manner. Utx loss caused increased self-renewal of hematopoietic stem cells and predisposed hematopoietic stem cells to differentiate into myeloid-derived lineages. Transcriptome and chromatin immunoprecipitation analyses revealed that Utx activates key transcriptional factors required for erythroid differentiation by modulating histone H3 lysine 27 and lysine 4 trimethylation. Our results suggest that Utx suppresses CMML formation by controlling hematopoietic stem cell self-renewal and differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006;75:243–69.

    Article  PubMed  CAS  Google Scholar 

  2. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6:838–49.

    Article  PubMed  CAS  Google Scholar 

  3. Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem. 2010;79:155–79.

    Article  PubMed  CAS  Google Scholar 

  4. Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007;25:1–14.

    Article  PubMed  CAS  Google Scholar 

  5. Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007;8:307–18.

    Article  PubMed  CAS  Google Scholar 

  6. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27.

    Article  PubMed  CAS  Google Scholar 

  7. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet. 2007;8:829–33.

    Article  PubMed  CAS  Google Scholar 

  9. Hojfeldt JW, Agger K, Helin K. Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov. 2013;12:917–30.

    Article  PubMed  CAS  Google Scholar 

  10. You Jueng S, Jones Peter A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dawson Mark A, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  PubMed  CAS  Google Scholar 

  12. Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612.

    Article  PubMed  CAS  Google Scholar 

  14. Albert M, Helin K. Histone methyltransferases in cancer. Semin Cell Dev Biol. 2010;21:209–20.

    Article  PubMed  CAS  Google Scholar 

  15. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7:823–33.

    Article  PubMed  CAS  Google Scholar 

  16. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.

    Article  PubMed  CAS  Google Scholar 

  17. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104:18439–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.

    Article  PubMed  CAS  Google Scholar 

  19. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318:447–50.

    Article  PubMed  CAS  Google Scholar 

  20. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kar SA, Jankowska A, Makishima H, Visconte V, Jerez A, Sugimoto Y, et al. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica. 2013;98:107–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mar BG, Bullinger L, Basu E, Schlis K, Silverman LB, Dohner K, et al. Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia. 2012;26:1881–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118:3932–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41:521–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Van der Meulen J, Speleman F, Van Vlierberghe P. The H3K27me3 demethylase UTX in normal development and disease. Epigenetics. 2014;9:658–68.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Thieme S, Gyarfas T, Richter C, Ozhan G, Fu J, Alexopoulou D, et al. The histone demethylase UTX regulates stem cell migration and hematopoiesis. Blood. 2013;121:2462–73.

    Article  PubMed  CAS  Google Scholar 

  30. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: focus on clinical practice. Mayo Clin Proc. 2016;91:259–72.

    Article  PubMed  Google Scholar 

  32. Patnaik MM, Parikh SA, Hanson CA, Tefferi A. Chronic myelomonocytic leukaemia: a concise clinical and pathophysiological review. Br J Haematol. 2014;165:273–86.

    Article  PubMed  Google Scholar 

  33. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2013;152:727–42.

    Article  PubMed  CAS  Google Scholar 

  34. Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS, et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 2012;337:1541–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature. 2011;473:230–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xu J, Wang YY, Dai YJ, Zhang W, Zhang WN, Xiong SM, et al. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci USA. 2014;111:2620–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.

    Article  PubMed  CAS  Google Scholar 

  39. Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics. 2012;28:2782–8.

    Article  PubMed  CAS  Google Scholar 

  40. Lee S, Lee Jae W, Lee S-K. UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell. 2012;22:25–37.

    Article  PubMed  CAS  Google Scholar 

  41. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 2012;8:e1002964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang C, Lee JE, Cho YW, Xiao Y, Jin Q, Liu C, et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci USA. 2012;109:15324–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA, et al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci USA. 2012;109:13004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse model to survey tumorigenic potential applied to the hedgehog pathway. Cancer Res. 2006;66:10171–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  PubMed  CAS  Google Scholar 

  46. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD, et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood. 2002;100:238–45.

    Article  PubMed  CAS  Google Scholar 

  47. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Human Mutat. 2007;28:622–9.

    Article  CAS  Google Scholar 

  48. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1–7.

    Article  PubMed  CAS  Google Scholar 

  49. Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene. 2002;21:3368–76.

    Article  PubMed  CAS  Google Scholar 

  50. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. Chromatin state dynamics during blood formation. Science. 2014;345:943–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bally C, Adès L, Renneville A, Sebert M, Eclache V, Preudhomme C, et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res. 2014;38:751–5.

    Article  PubMed  CAS  Google Scholar 

  53. Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 2017;9:eaai8312.

    Article  PubMed  CAS  Google Scholar 

  54. Grossmann V, Kohlmann A, Eder C, Haferlach C, Kern W, Cross NCP, et al. Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance. Leukemia 2011;25:877–9.

    Article  PubMed  CAS  Google Scholar 

  55. Mochizuki-Kashio M, Aoyama K, Sashida G, Oshima M, Tomioka T, Muto T, et al. Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner. Blood. 2015;126:1172–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lijian Hui (SIBCB, Shanghai, China) for sharing p53 KO mice. This work was supported by the National Basic Research Program of China (2014CB943100), the National Natural Science Foundation of China (81772472), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDB19000000). Accession numbers: RNA-Seq data are available in the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) under the accession numbers: GSE97737.

Author contributions

LTZ and LYX designed and performed the experiments and wrote the manuscript. QX, DFZ, and GH performed the animal experiments. LY performed the bioinformatic analyses. PC analyzed the mouse phenotype. WW and YQW performed the cell experiments. CDC conceived and supervised the project and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlie Degui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Liting Zheng and Longyong Xu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Xu, L., Xu, Q. et al. Utx loss causes myeloid transformation. Leukemia 32, 1458–1465 (2018). https://doi.org/10.1038/s41375-018-0011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0011-6

This article is cited by

Search

Quick links