Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ANP32A regulates histone H3 acetylation and promotes leukemogenesis

Abstract

Deregulation of key regulators of histone modification is important in the initiation and progression of human leukemia. Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) participates in histone acetylation and its role in acute myeloid leukemia remains unclear. Here we observed significant upregulation of ANP32A in primary AML cells, which was essential for AML cell proliferation, survival, and colony formation. Integrative analysis of the genome-wide histone H3 acetylation and gene expression demonstrated that ANP32A deficiency reduced histone H3 acetylation, in accordance with changes in gene expression. Notably, significant histone H3 acetylation enrichment was associated with mRNA changes in lipid-related genes, including APOC1, PCSK9, P2RX1, and LPPR3. Indeed, over-expression of APOC1 partially compensated the proliferation-defect phenotype in ANP32A deficient AML cells while APOC1 knockdown alone mimicked the effect of ANP32A deficiency. Collectively, our data indicate that ANP32A is a novel regulator of histone H3 acetylation and promotes leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrawal-Singh S, Isken F, Agelopoulos K, Klein HU, Thoennissen NH, Koehler G, et al. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood. 2012;119:2346–57.

    Article  PubMed  CAS  Google Scholar 

  2. Sauer T, Arteaga MF, Isken F, Rohde C, Hebestreit K, Mikesch JH, et al. MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML. Exp Hematol. 2015;43:794–802.

    Article  PubMed  CAS  Google Scholar 

  3. Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001;15:89–94.

    Article  PubMed  CAS  Google Scholar 

  4. Lavau C, Du C, Thirman M, Zeleznik-Le N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. Embo J. 2000;19:4655–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kasper LH, Brindle PK, Schnabel CA, Pritchard CEJ, Cleary ML, van Deursen JMA. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol. 1999;19:764–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mandoli A, Singh AA, Jansen PW, Wierenga AT, Riahi H, Franci G, et al. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia. 2014;28:770–8.

    Article  PubMed  CAS  Google Scholar 

  7. Singh AA, Mandoli A, Prange KH, Laakso M, Martens JH. AML associated oncofusion proteins PML-RARA, AML1-ETO and CBFB-MYH11 target RUNX/ETS-factor binding sites to modulate H3ac levels and drive leukemogenesis. Oncotarget. 2016;8:12855–65.

    PubMed Central  Google Scholar 

  8. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Giotopoulos G, Chan WI, Horton SJ, Ruau D, Gallipoli P, Fowler A, et al. The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene. 2016;35:279–89.

    Article  PubMed  CAS  Google Scholar 

  10. Gao XN, Lin J, Ning QY, Gao L, Yao YS, Zhou JH, et al. A histone acetyltransferase p300 inhibitor C646 induces cell cycle arrest and apoptosis selectively in AML1-ETO-positive AML cells. PloS One. 2013;8:e55481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Burkhart RA, Brody JR. ANP32A (acidic (leucine-rich) nuclear phosphoprotein 32 family, member A). Atlas Genet Cytogenet Oncol Haematol. 2013;17:557–62.

  12. Schneider R, Bannister AJ, Weise C, Kouzarides T. Direct binding of INHAT to H3 tails disrupted by modifications. J Biol Chem. 2004;279:23859–62.

    Article  PubMed  CAS  Google Scholar 

  13. Kutney SN, Hong R, Macfarlan T, Chakravarti D. A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression. J Biol Chem. 2004;279:30850–5.

    Article  PubMed  CAS  Google Scholar 

  14. Brody JR, Kadkol SS, Hauer MC, Rajaii F, Lee J, Pasternack GR. pp32 reduction induces differentiation of TSU-Pr1 cells. Am J Pathol. 2004;164:273–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kadota S, Nagata K. pp32, an INHAT component, is a transcription machinery recruiter for maximal induction of IFN-stimulated genes. J Cell Sci. 2011;124(Pt 6):892–9.

    Article  PubMed  CAS  Google Scholar 

  16. Reilly PT, Yu Y, Hamiche A, Wang L. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. Bioessays. 2014;36:1062–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhu BD, Li XL, Liu Y, Chang J, Liu Y, Zhang DD, et al. Involvement of Hepatopoietin Cn in the development of human hepatocellular carcinoma. Clin Exp Metastasis. 2010;27:571–80.

    Article  PubMed  CAS  Google Scholar 

  18. Sun X, Lu B, Hu B, Xiao W, Li W, Huang Z. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling. Blood Cancer J. 2014;4:e198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huang Z, Dore LC, Li Z, Orkin SH, Feng G, Lin S, et al. GATA-2 reinforces megakaryocyte development in the absence of GATA-1. Mol Cell Biol. 2009;29:5168–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu L, Wen Q, Gong R, Gilles L, Stankiewicz MJ, Li W, et al. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN. Cell Death Dis. 2014;5:e988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. O’Geen H, Echipare L, Farnham PJ. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol Biol. 2011;791:265–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhou J, Wu J, Li B, Liu D, Yu J, Yan X, et al. PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia. 2014;28:1436–48.

    Article  PubMed  CAS  Google Scholar 

  23. Wang QF, Li YJ, Dong JF, Li B, Kaberlein JJ, Zhang L, et al. Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia. 2014;28:138–46.

    Article  PubMed  CAS  Google Scholar 

  24. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shen L, Shao NY, Liu XC, Maze I, Feng J, Nestler EJ. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PloS One. 2013;8:e65598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10:946–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Members BIGDC. TheBIG Data Center: from deposition to integration to translation. Nucleic Acids Res. 2017;45(D1):D18–D24.

    Article  CAS  Google Scholar 

  29. Kadkol SS, Brody JR, Epstein JI, Kuhajda FP, Pasternack GR. Novel nuclear phosphoprotein pp32 is highly expressed in intermediate- and high-grade prostate cancer. Prostate. 1998;34:231–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ouellet V, Le Page C, Guyot MC, Lussier C, Tonin PN, Provencher DM, et al. SET complex in serous epithelial ovarian cancer. Int J Cancer. 2006;119:2119–26.

    Article  PubMed  CAS  Google Scholar 

  31. Schafer ZT, Parrish AB, Wright KM, Margolis SS, Marks JR, Deshmukh M, et al. Enhanced sensitivity to cytochrome c-induced apoptosis mediated by PHAPI in breast cancer cells. Cancer Res. 2006;66:2210–8.

    Article  PubMed  CAS  Google Scholar 

  32. Brody JR, Witkiewicz A, Williams TK, Kadkol SS, Cozzitorto J, Durkan B, et al. Reduction of pp32 expression in poorly differentiated pancreatic ductal adenocarcinomas and intraductal papillary mucinous neoplasms with moderate dysplasia. Mod Pathol. 2007;20:1238–44.

    Article  PubMed  CAS  Google Scholar 

  33. Shi H, Hood KA, Hayes MT, Stubbs RS. Proteomic analysis of advanced colorectal cancer by laser capture microdissection and two-dimensional difference gel electrophoresis. J Proteom. 2011;75:339–51.

    Article  CAS  Google Scholar 

  34. Li C, Ruan HQ, Liu YS, Xu MJ, Dai J, Sheng QH, et al. Quantitative proteomics reveal up-regulated protein expression of the SET complex associated with hepatocellular carcinoma. J Proteome Res. 2012;11:871–85.

    Article  PubMed  CAS  Google Scholar 

  35. Valk PJM, Verhaak RGW, Beijen MA, Erpelinck CAJ, van Doorn-Khosrovani SBV, Boer JM, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. New Engl J Med. 2004;350:1617–28.

    Article  PubMed  CAS  Google Scholar 

  36. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  37. Opal P, Garcia JJ, McCall AE, Xu B, Weeber EJ, Sweatt JD, et al. Generation and characterization of LANP/pp32 null mice. Mol Cell Biol. 2004;24:3140–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–68.

    Article  PubMed  CAS  Google Scholar 

  39. Seo SB, Macfarlan T, McNamara P, Hong R, Mukai Y, Heo S, et al. Regulation of histone acetylation and transcription by nuclear proteinpp32, a subunit of the INHAT complex. J Biol Chem. 2002;277:14005–10.

    Article  PubMed  CAS  Google Scholar 

  40. Shen L, Shao NY, Liu X, Maze I, Feng J, Nestler EJ. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PloS One. 2013;8:e65598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5:e189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chen TH, Brody JR, Romantsev FE, Yu JG, Kayler AE, Voneiff E, et al. Structure ofpp32, an acidic nuclear protein which inhibits oncogene-induced formation of transformed foci. Mol Biol Cell. 1996;7:2045–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Brody JR, Rebel JM, Kadkol SS, Kuhajda FP, Pasternack GR. Identification of pp32 sequences inhibiting oncogene-mediated transformation. Mol Biol Cell. 1996;7:1009–1009.

    Google Scholar 

  45. Brody JR, Kadkol SS, Mahmoud MA, Rebel JMJ, Pasternack GR. Identification of sequences required for inhibition of oncogene-mediated transformation by pp32. J Biol Chem. 1999;274:20053–5.

    Article  PubMed  CAS  Google Scholar 

  46. Bai JN, Brody JR, Kadkol SHS, Pasternack GR. Tumor suppression and potentiation by manipulation of pp32 expression. Oncogene. 2001;20:2153–60.

    Article  PubMed  CAS  Google Scholar 

  47. Pan W, da Graca LS, Shao Y, Yin Q, Wu H, Jiang X. PHAPI/pp32 suppresses tumorigenesis by stimulating apoptosis. J Biol Chem. 2009;284:6946–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Thompson EB. The many roles of c-Myc in apoptosis. Annu Rev Physiol. 1998;60:575–600.

    Article  PubMed  CAS  Google Scholar 

  49. Sipos F, Firneisz G, Muzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol. 2016;22:7938–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Takano S, Yoshitomi H, Togawa A, Sogawa K, Shida T, Kimura F, et al. Apolipoprotein C-1 maintains cell survival by preventing from apoptosis in pancreatic cancer cells. Oncogene. 2008;27:2810–22.

    Article  PubMed  CAS  Google Scholar 

  51. Lightfoot J, Hitzler JK, Zipursky A, Albert M, Macgregor PF. Distinct gene signatures of transient and acute megakaryoblastic leukemia in Down syndrome. Leukemia. 2004;18:1617–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31371481 to Z. H., 91731302 to Q.F.W., 81670140 to Z. H., 81425003 to Q.F.W., 81770168 to D. L.), and National Key Basic Research Program of China (2014CB542001 to Q.F.W.), Social Development Project of Jiangsu Province (CXTDA2017014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-fei Wang or Zan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lu, B., Sun, X. et al. ANP32A regulates histone H3 acetylation and promotes leukemogenesis. Leukemia 32, 1587–1597 (2018). https://doi.org/10.1038/s41375-018-0010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0010-7

This article is cited by

Search

Quick links