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Abstract
Transient receptor ion channels have emerged as immensely important channels/receptors in diverse physiological and
pathological responses. Of particular interest is the transient receptor potential channel subfamily V member 4 (TRPV4),
which is a polymodal, nonselective, calcium-permeant cation channel, and is activated by both endogenous and exogenous
stimuli. Both neuronal and nonneuronal cells express functional TRPV4, which is responsive to a variety of biochemical and
biomechanical stimuli. Emerging discoveries have advanced our understanding of the role of macrophage TRPV4 in
numerous inflammatory diseases. In lung injury, TRPV4 mediates macrophage phagocytosis, secretion of pro-resolution
cytokines, and generation of reactive oxygen species. TRPV4 regulates lipid-laden macrophage foam cell formation, the
hallmark of atheroinflammatory conditions, in response to matrix stiffness and lipopolysaccharide stimulation. Accumulating
data also point to a role of macrophage TRPV4 in the pathogenesis of the foreign body response, a chronic inflammatory
condition, through the formation of foreign body giant cells. Deletion of TRPV4 in macrophages suppresses the allergic and
nonallergic itch in a mouse model, suggesting a role of TRPV4 in skin disease. Here, we discuss the current understanding of
the role of macrophage TRPV4 in various inflammatory conditions.

Introduction

Transient receptor potential vanilloid type 4 (TRPV4) ion
channels are nonselective, mechanosensitive, transmem-
brane Ca2+-permeable cation channels that are ubiquitously
expressed in numerous cell types including macrophages
[1–14]. TRPV4 channels are activated by a diverse array of
biochemical and biomechanical stimuli including mechan-
ical deformation [15–17], osmotic stimuli [18–20], heat
[21–24], and by exogenous or endogenous chemical stimuli
[6, 25–28]. TRPV4 is associated with numerous physiolo-
gical functions such as osmolarity sensing in kidneys, sheer-
stress sensing in arteries, neurological responses, and the
regulation of osteogenesis [1, 29–32]. In mice, absence of
TRPV4 is linked to altered pressure/vasodilatory responses,
osmosensing, sensory and motor neuropathies, and the
development of fibrosis in lung, skin, and cornea [29–34].

Various biochemical factors including cytokines, che-
mokines, modified low-density lipoprotein (LDL), and

bacterial lipopolysaccharide (LPS) are active in eliciting
macrophage-mediated inflammatory responses [10, 35–44].
Emerging reports from our laboratory and others have
shown that critical proinflammatory macrophage responses
such as phagocytosis, migration, foam cell formation,
expression of inflammatory proteins, and proliferation are
sensitive to changes in stiffness of their surrounding matrix
[10, 36–43]. Therefore, it is important to identify the
mechanosensing plasma membrane macrophage receptor/
channel by which biomechanical signals are transduced and
propagated into cells to drive the generation of inflamma-
tory and other cellular responses. Since TRPV4 is a
mechanosensitive channel, and is activated by both bio-
chemical and biomechanical stimuli, it was hypothesized
that under certain pathophysiological conditions macro-
phage TRPV4 may act as a proinflammatory molecule.
Intriguingly, emerging data from our laboratory and others
have shown that the macrophage TRPV4 is involved in a
variety of inflammatory diseases including acute lung
injury/acute respiratory disease syndrome, atherosclerosis,
foreign body response (FBR), skin disease, and fibrosis
[10, 30, 34, 41, 43, 45–50]. Although, the precise
mechanism by which TRPV4 orchestrates the pathophy-
siology of these diseases is not fully understood, these
studies suggest that TRPV4 plays a critical role in reg-
ulating various inflammatory responses like cytokine
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production, foam cell formation, giant cell formation, and
phagocytosis.

Ca2+ is an essential second messenger responsible for
modulating an array of cellular responses in numerous cell
types, including macrophages. Ca2+-dependent signaling is
associated with various macrophage inflammatory respon-
ses including atherogenesis, migration, phagocytosis, and
foam cell formation [51–56]. The maintenance of macro-
phage Ca2+ homeostasis is in part mediated by ion channels
and pumps, and its dysregulation can lead to numerous
pathophysiological conditions [57, 58]. Importantly,
TRPV4-dependent generation of Ca2+ influx has multi-
farious roles in different cell types including macrophages
[1, 2, 5, 6, 11, 14, 29–33, 41, 59]. The current review
specifically focuses on the role of macrophage TRPV4 in
mediating inflammatory responses.

Pulmonary diseases

Among the present-day lifesaving interventions for acute
respiratory distress syndrome, positive pressure mechan-
ical ventilation is one of the most commonly used. How-
ever, mechanical ventilation with excessive tidal volumes
can in turn contribute to ventilator-induced lung injury
(VILI) characterized by a rapid increase in vascular per-
meability, cytokine release, and inflammatory cell infil-
tration [60, 61]. Interestingly, it was found that Ca2+ entry
through TRPV4 initiates the increase in permeability
during VILI in isolated mouse lungs [30]. Although earlier
studies suggested a possible role of alveolar macrophages
in increasing lung permeability in VILI, Hamanaka et al.
were the first to identify the mechanical ventilation
induced stretch activated TRPV4-dependent lung injury
response in alveolar macrophages [46, 62, 63]. Alveolar
macrophages from TRPV4 KO mice, after being activated
by high volume ventilation, had decreased production of
reactive oxygen (ROS) and nitrogen species (RNS), sug-
gesting that TRPV4-dependent generation of ROS and
RNS led to the formation of peroxynitrite, which
accounted for the increased permeability. Furthermore, in
the VILI model, TRPV4 was found to be linked with
various macrophage responses such as spreading, phago-
cytosis, adhesion, and motility. TRPV4 KO mice failed to
develop VILI, but the instillation of WT macrophages into
TRPV4 KO mice restored the development of the lung
injury, suggesting that mechanical activation of TRPV4 in
alveolar macrophages plays a critical role in VILI [46].
Similarly, in a murine high tidal volume ventilation model
of lung injury, blocking TRPV4 attenuated both the
increase in pulmonary barrier permeability and the
increase in proinflammatory cytokine expression by M1
macrophages [64].

Macrophage phagocytosis is a complex phenomenon that
has evolved in multicellular organisms as a defense
mechanism against foreign particles and pathogens, and as a
housekeeping mechanism to clear out apoptotic cells during
development and adult life [65–68]. Recently it was shown
that LPS-triggered phagocytosis by macrophages of non-
opsonized particles in vitro and of opsonized particles
in vitro and in vivo was mediated by TRPV4, and that
matrix stiffness >25 kPa (mimicking inflamed or fibrotic
lungs) augmented this response [41]. Furthermore, this
study showed that TRPV4 was essential for LPS-stimulated
expression of various cytokines. Taken together, this work
suggests a novel role of TRPV4 in macrophage phagocy-
tosis, which could be consequential in physiological func-
tions like resolution of lung inflammation, maintenance of
tissue homeostasis, and defense against pulmonary infection
and fibrosis. Overall, this study suggests that TRPV4 is
sensitized by changes in matrix stiffness as a result of
inflamed and/or infected lung, and cooperates with soluble
factors including LPS to promote various macrophage
responses including phagocytosis.

Tissue injury due to inflammation can lead to the release
of an array of proteases such as trypsin, thrombin, and
elastases [69, 70]. Protease activating receptor 2 (PAR2) is a
G protein coupled receptor that is expressed in alveolar
macrophages, endothelial cells, and epithelial cells involved
in modulating inflammatory responses, obesity, and meta-
bolism, and can be activated by several proteases [71, 72].
Recently, Rayees et al. identified an anti-inflammatory role
of PAR2 in alveolar macrophages by suppression of toll-
like receptor 4 (TLR4)-induced inflammation [73].
Mechanistically, PAR2-mediated cAMP generation inhib-
ited TRPV4-dependent Ca2+ signaling in alveolar macro-
phages to resolve TLR-elicited inflammation. Depletion of
TRPV4 using siRNA or other antagonists in PAR2 null
mice blocked Ca2+ entry, and also reduced the levels of
proinflammatory cytokines and levels of phosphorylation of
NFκB and NFAT. Blockade of TRPV4 in PAR2 null mouse
alveolar macrophages after LPS challenge promoted the
resolution of inflammation and reversed lung injury [73].
Taken together, this study suggests that TRPV4 plays an
essential role in mediating inflammation in TLR4-induced
responses in alveolar macrophages.

Recent work by Li et al. showed that TRPV4 plays a
crucial role in LPS-induced acute lung injury by regulating
the calcineurin/NFATc3 signaling pathway [74]. They
found that blocking TRPV4 function prevented pneumoe-
dema in LPS-induced lung injury, and resulted in reduced
production of proinflammatory molecules TNF-α, IL-6, and
ROS. Further, they showed that TRPV4 activated macro-
phages through Ca2+ influx in LPS-induced lung injury.
Specifically, they demonstrated that TRPV4 deficiency
inhibited LPS-induced calcineurin activation, blocked
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nuclear translocation of NFATc3 in macrophages, and
inhibited release of proinflammatory cytokines. Collec-
tively, these data suggest that TRPV4-mediated Ca2+ influx
activates the downstream calcineurin/NFATc3 signaling
pathway, which mediates the inflammatory response in
acute lung injury.

Atherosclerosis

Atherosclerosis, a leading contributor to mortality and
morbidity around the world, is a progressive disease that is
characterized by chronic inflammatory responses and
fibrofatty lesions in large arteries; atherosclerosis is
the principal cause of cerebral and myocardial infarction
[75–79]. Injury to vascular endothelium marks the begin-
ning of atherogenesis, which is characterized by trapping of
LDL particles in arteries, followed by the expression of
numerous inflammatory/adhesion molecules on the surface
of endothelial cells [75–79]. Monocytes and T-lymphocytes
attach to these molecules, and transmigrate into the arterial
intima, where the monocytes differentiate into tissue mac-
rophages, and upregulate expression of scavenger receptors
[75–79]. Uptake of oxidized/modified LDL particles by
scavenger receptors leads to the formation of macrophage
foam cells, a critical atheroinflammatory process in ather-
osclerosis development [44, 56, 75–80]. The accumulating
foam cells along with other cell debris, calcium, lipids, and
extracellular matrix form fibro-atheromatous plaques [75–
79]. Over the past decade, evidence of the role of inflam-
mation in atherosclerosis, and its associated complications,
has continued to grow [75–79, 81]. Earlier studies show that
increases in overall oxidative stress attributed to chronic
inflammatory conditions can aggravate the process of
atherogenesis [75–79].

Ca2+ signaling is known to control a diverse array of
macrophage functions including phagocytosis, foam cell
formation, proliferation, migration, and adhesion [51–58].
Recent studies also report a role of matrix stiffness in the
regulation of macrophage function [10, 36–43]. Macro-
phages are known to express an intricate system of ion
channels/pumps that is involved in maintaining cellular
calcium homeostasis [57, 58]. Our published data show that
TRPV4 is required for oxLDL internalization by macro-
phages, and for subsequent formation of macrophage foam
cells, and that loss of TRPV4 function (either genetic or
pharmacological) abrogates foam cell formation [10].
Interestingly, emerging data support a role for a bio-
mechanical factor, e.g., matrix stiffness, in the modulation
of numerous proatherogenic macrophage functions, vas-
cular elasticity, and atherogenesis [10, 36–43]. Our group
showed that mechanical stimuli like matrix stiffness or
scratch-induced macrophage foam cell formation was

TRPV4 dependent, and this was particularly important as it
mimicked the physiological conditions of atherosclerosis
[10]. Future studies will determine how changes in matrix
stiffness can lead to activation of mechanosensitive TRPV4
channels in a positive feed-forward manner to promote
atheroinflammatory processes in vivo.

Approximately 50% of cardiovascular disease patients
lack classic risk factors like hyperlipidemia, smoking,
hypertension, and diabetes [76–79, 82]. Both clinical and
experimental studies have shown that infection of microbial
pathogens including P. gingivalis may serve as an addi-
tional risk factor in atherosclerosis [83–90]. Interestingly,
recent studies suggest an association between periodontal
disease and the generation of stiffness in arterial tissues
[88, 90]. P. gingivalis, a predominant causative agent of
periodontal disease, has been previously reported to accel-
erate proatherogenic processes in animal models, exerting its
effect through various mechanisms including release of LPS,
modulating binding/internalization of oxLDL, macrophage
foam cell formation, and infiltration of M1 macrophages
[83–90]. Published data from our group has recently shown
that TRPV4 mechanosensing plays a role in P. gingivalis-
LPS-triggered augmentation of oxLDL-induced macrophage
foam cell formation [43]. Overall our results suggest that
TRPV4 integrates LPS and matrix stiffness-induced
responses during infection, and elicits Ca2+ influx, which
mediates macrophage oxLDL uptake and foam cell forma-
tion. Although it was found that decreased foam cell for-
mation in TRPV4 deficient macrophages was independent
of CD36 (a major scavenger receptor for oxLDL) expres-
sion, there was increased co-localization of TRPV4 and
CD36 in response to increasing matrix stiffness and LPS.
Collectively, these data led us to postulate that increased
matrix stiffness in LPS exposed macrophages causes co-
localization and crosstalk of TRPV4 and CD36 leading to
increased foam cell formation. These findings implicate a
possible connection between periodontal infection, TRPV4,
and eventual development of atherosclerosis.

Previously, Xu et al. reported an atheroprotective func-
tion of TRPV4, in which TRPV4 function in endothelial
cells is associated with activation of eNOS and inhibition of
monocyte adhesion to endothelial cells [91]. In contrast,
deficiency of TRPV4 functions has been linked to numerous
atheroinflammatory responses including endothelial dys-
function, reduced macrophage foam cell generation, and
vascular diseases [9, 10, 27, 92]. Despite the past findings,
an in vivo model supporting these in vitro findings is still
missing. ApoE deficient mice have been associated with the
development of hypercholesterolemia due to the poor
lipoprotein metabolism and clearance, and are an estab-
lished murine model of atherosclerosis [93, 94]. Thus, for
gaining better mechanistic understanding of the link
between TRPV4 and atherosclerosis, it is critical to
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elucidate the in vivo role of this channel utilizing an ApoE/
TRPV4 double knockout mouse model, and to determine
the responsible molecular mechanisms.

Foreign body response

The FBR is an end stage chronic inflammatory host reaction
following implantation of a biomaterial, prosthesis, or
medical device into soft tissues; FBR may cause harm to or
death of the patient [95–101]. The events leading to the
development of the FBR include adsorption of plasma
proteins on the biomaterial, activation of complement sys-
tem, macrophage recruitment and activation, generation of
destructive foreign body giant cells (FBGC), and formation
of fibrous tissue, which encapsulates the implant [95–101].
Despite the clinical importance of the condition, a thorough
molecular understanding of the FBR is still lacking. Mac-
rophages play a central role in development and progression
of FBR through their expression of inflammatory proteins,
formation of FBGCs, remodeling of the extracellular
matrix, and encapsulation of the implant [95–101]. Previous
reports by our group and others have shown that various
macrophage functions such as phagocytosis, adhesion, and
migration are responsive to changes in matrix stiffness,
suggesting that biomechanical factors may play a role in the
FBR [10, 36–43]. Recently, we reported that genetic abla-
tion of TRPV4, a mechanosensitive channel, protects mice
from FBR-related events [49]. TRPV4 deficient mice
showed diminished collagen production, reduced macro-
phage accumulation, and reduced FBGC formation com-
pared with WT mice in a subcutaneous biomaterial
implantation model. Furthermore, we showed that genetic
deficiency or pharmacologic inhibition of TRPV4 reduced
cytokine-induced FBGC formation, which was restored by
lentivirus-mediated TRPV4 reintroduction. Altogether,
these results suggest an important, previously unsuspected
role for TRPV4 in FBR. Delineation of the underlying
TRPV4 activation and subsequent mechanism may identify
attractive targets for future therapeutic intervention
for FBR.

Fibrosis and chronic itch

The role of TRPV4 in fibrosis and chronic itch is an
emerging area of research, and many groups including ours
are interested in determining how this mechanosensitive
Ca2+-permeant channel regulates various lung and skin-
related pathologies. Fibrosis or scar formation cause chronic
pathological conditions in lung, heart, kidney, skin, and
liver, which are characterized by accumulation of myofi-
broblasts, epithelial–mesenchymal transition (EMT), and

secretion of extracellular matrix proteins [102–105]. Tissue
injury and exacerbated/uncontrolled myofibroblast differ-
entiation are critical steps in the pathogenesis of fibrosis
[102–105]. Various immune cells, specifically inflammatory
monocytes and tissue-resident macrophages are key drivers
of tissue regeneration and fibrosis [106]. Following tissue
damage, monocytes/macrophages undergo phenotypic and
functional transitions enabling their participation in various
phases of tissue repair [106]. However, aberrant macro-
phage responses can lead to uncontrolled tissue repair due
to sustained production of inflammatory mediators, growth
factors, lack of M2 macrophages, excessive EMT, exacer-
bated myofibroblast generation, and aberrant activity of
stem or tissue progenitor cells [106]. Previously, we
reported that TRPV4 is associated with skin and lung
fibrosis [11, 13, 14]. TRPV4 regulates both biochemical
(Transforming growth factor β1)- and biomechanical
(matrix stiffness) stimulus-induced lung and dermal myo-
fibroblast differentiation, which is associated with fibrosis
development in scleroderma, and contributes to the devel-
opment of in vivo pulmonary and skin fibrosis in murine
models [11, 14, 33]. We also showed that TRPV4 plays an
important role in EMT in both human and murine primary
keratinocytes [107]. However, the specific role of macro-
phage TRPV4 in fibrosis has not been determined. Devel-
opment of cell-type specific animal models might shed more
light into this relatively less explored area of research.

Chronic itch, a symptom of numerous skin disorders, is
still poorly understood at the molecular level, and treat-
ments are largely ineffective [108, 109]. Previous studies
have identified hypotonicity and metabolites of the meva-
lonate pathway as activators of TRPV4-mediated nocicep-
tion [110, 111]. However, Luo et al. in a recently published
report, showed that the osmosensitive TRPV4 channels are
selectively expressed in dermal macrophages and kerati-
nocytes, and deletion of TRPV4 in macrophages and ker-
atinocytes suppressed allergic and nonallergic itch in mice
[109]. Skin biopsy samples from chronic idiopathic pruritus
patients also had significantly higher expression of TRPV4
compared with healthy controls. Furthermore, their studies
show that 5-hydroxytryptamine signaling is a critical
downstream component of TRPV4-mediated allergic and
nonallergic itch

Okada et al. used a corneal alkali burn wound healing
model to determine the role of TRPV4 in corneal fibrosis
[34]. They found higher TRPV4 expression in stromal cells
after activation by alkali burn compared with the WT. They
found that stromal opacification, due to development of
fibrosis, was markedly reduced in TRPV4 KO mice.
Immunohistochemistry data showed that TRPV4 KO mice
failed to exhibit the expected fibrosis-associated increase in
numbers of polymorphonuclear leukocytes and accumula-
tion of macrophages. Furthermore, the data showed that
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macrophage release of interleukin-6 was reduced. Reci-
procal bone marrow transplantation studies between WT
and TRPV4 KO chimeric mouse models showed that
reduced fibrosis and inflammation in TRPV4 KO mice were
attributable in part to the loss of TRPV4 expression in
macrophages. Altogether, these results suggest that alkali-
induced corneal fibrosis and inflammation were, in part,
dependent on macrophage TRPV4.

Conclusions

Inflammation is a vital part of the immunological response
to injury and infection. However, it can also lead to tissue
injury or destruction if unchecked. The role of TRPV4 in
inflammatory diseases is being studied by several groups. In
the setting of pulmonary diseases, macrophage TRPV4 has
been seen to modulate both inflammatory and anti-
inflammatory functions through its role in phagocytosis,
release of cytokines, and regulation of signaling processes.
TRPV4 was shown to be a novel regulator of matrix stiff-
ness and LPS-induced oxLDL-mediated macrophage foam
cell formation, a critical atheroinflammatory process in
atherosclerosis. Emerging evidence also suggests a role of
macrophage TRPV4 in FBR, fibrosis, and chronic allergic
and nonallergic itch. Elucidation of the precise role and
mechanism of macrophage TRPV4 in inflammatory condi-
tions will be important for developing targeted therapeutics
for the resolution of inflammatory diseases.
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