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Abstract
Bone marrow aspirate (BMA) differential cell counts (DCCs) are critical for the classification of hematologic disorders.
While manual counts are considered the gold standard, they are labor intensive, time consuming, and subject to bias. A
reliable automated counter has yet to be developed, largely due to the inherent complexity of bone marrow specimens.
Digital pathology imaging coupled with machine learning algorithms represents a highly promising emerging technology for
this purpose. Yet, training datasets for BMA cellular constituents, critical for building and validating machine learning
algorithms, are lacking. Herein, we report our experience creating and employing such datasets to develop a machine
learning algorithm to detect and classify BMA cells. Utilizing a web-based system that we developed for annotating and
managing digital pathology images, over 10,000 cells from scanned whole slide images of BMA smears were manually
annotated, including all classes that comprise the standard clinical DCC. We implemented a two-stage, detection and
classification approach that allows design flexibility and improved classification accuracy. In a sixfold cross-validation, our
algorithms achieved high overall accuracy in detection (0.959 ± 0.008 precision-recall AUC) and classification (0.982 ± 0.03
ROC AUC) using nonneoplastic samples. Testing on a small set of acute myeloid leukemia and multiple myeloma samples
demonstrated similar detection and classification performance. In summary, our algorithms showed promising early results
and represent an important initial step in the effort to devise a reliable, objective method to automate DCCs. With further
development to include formal clinical validation, such a system has the potential to assist in disease diagnosis and
prognosis, and significantly impact clinical practice.

Examination of the bone marrow is an essential part of the
hematologic work-up for many blood and bone marrow
diseases and a common laboratory procedure [1]. As part of
this examination, a nucleated DCC is obtained by micro-
scopy on Wright-stained BMA smears. This procedure
entails quantification of cells of different lineages to deter-
mine the proportions of each, the findings of which aid in
the classification of numerous benign and malignant
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hematologic disorders. In fact, disease defining criteria are
based on cutoff percentages of myeloblasts for myeloid
malignancies, such as acute myeloid leukemia (AML) and
myelodysplastic syndromes, and the percentage of plasma
cells for plasma cell neoplasms, such as monoclonal gam-
mopathy of undetermined significance and smoldering
myeloma [2].

Several factors render manual DCC analysis suboptimal,
as currently performed in clinical laboratories [3]. First,
DCCs are labor intensive and time consuming. Second,
inter- and intraobserver variability in terms of cell identifi-
cation and choice of cells for counting represent ongoing
sources of error. Third, there is inherent statistical impre-
cision due to the relatively small number of cells generally
counted. If successfully developed, automation of DCCs
could obviate most of these concerns.

Traditional automated hematology analyzers that do not
employ digital images have been explored for performing
DCCs. Major problems with this approach included failure
to count nucleated red blood cells and to differentiate stages
of cell development, as well as interference by bone marrow
lipid [4, 5]. These issues are perhaps unsurprising given the
complex nature of bone marrow compared with blood for
which these instruments were designed. However, a com-
puterized method using digital pathology images could
potentially perform DCCs on all pertinent bone marrow
cells on a smear. Aside from increasing throughput and
reducing labor costs, such an approach could potentially
improve accuracy, reproducibility, and objectivity and
provide much needed standardization for DCCs.

Cell detection and classification are perhaps the most
widely studied problems in computational pathology, with
most efforts focused on the analysis of hematoxylin and
eosin stained solid tumor sections. While commercial blood
analyzers have begun utilizing automated image analysis of
Wright stained smears [6], their accuracy largely depends
on precise control of preanalytical variables to minimize
staining variations and cell crowding, while maximizing
preservation of cytologic details. Detection and classifica-
tion in BMA smears is significantly more challenging due to
the high density of touching and overlapping cells, as well
as the greater diversity and complexity of cell morpholo-
gies. Cell and nuclei detection algorithms often rely on
circular or axial symmetry and may fail to detect cells with
irregular or multilobed nuclei or may incorrectly interpret
these as multiple cells. Classification is difficult without
accurate detection of cells and localization of cell bound-
aries (using image segmentation algorithms), and is further
compounded by the subtlety of differences in cytologic
characteristics used to distinguish many cell types found in
bone marrow.

Machine learning approaches have emerged as the
dominant paradigm in analyzing histology images [7–12].

Whereas traditional image analysis methods are engineered
using domain knowledge or mathematical models, machine
learning algorithms that utilize neural networks are adaptive
and can learn from data in an unbiased manner [13]. While
neural networks typically exhibit superior performance in
tasks like detection and classification, realizing these ben-
efits can require thousands of labeled examples for training
algorithms to recognize variations in staining and mor-
phology and to reach diagnostically-meaningful accuracy.
This demand for labeled data places significant emphasis on
the process of image annotation, with efficient protocols and
software interfaces being key additional ingredients for
developing highly accurate, deep learning algorithms.
Current literature on image analysis of BMA smears has not
adequately addressed the detection of cells, a particularly
challenging problem in BMA smears, and has demonstrated
success with only a few cytological classes, limiting
potential clinical use [14, 15].

In this paper, we describe our initial steps toward the
development of a machine learning digital pathology sys-
tem to perform DCCs and describe promising initial results
in detecting and classifying all nonneoplastic bone marrow
cellular constituents of the DCC and neoplastic cells in a
small set of AML and multiple myeloma (MM) test cases.
Our software prototype achieves a high degree of accuracy
in cell detection and classification tasks, using a two-stage
system, based on convolutional neural networks. This sys-
tem is, moreover, able to reliably localize closely packed
cells and classify diverse cytomorphologies. A large-scale
annotation effort to produce data for training and validation
was critical in achieving these results. This study outlines a
promising prototype system for automating bone marrow
DCCs and provides a basis for further development and
eventual clinical validation studies that will include a
comprehensive array of bone marrow neoplasms. A glos-
sary of technical terms used in this paper is presented in
Table S1.

Materials and methods

Bone marrow aspirate smears

Wright-stained BMA smears, made for routine patient
care from 17 patients, were deidentified and scanned at
0.25 μm/pixel (×40 objective) using an Aperio
AT2 scanner™ to generate whole-slide images. The
smears were uniformly prepared in the bone marrow
laboratory at Emory University Hospital from June to
August 2015 using the same procedure and reagent ven-
dors. Smears were selected at random from a set of cases,
previously studied in manual DCC analyses [3], provided
they included cellular particles with at least 500 bone
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marrow hematopoietic cells, displayed reference range
DCCs, minimal cellular degeneration, and a paucity of
smearing artifacts. Moreover, complete pathologic inves-
tigation in all cases failed to disclose morphologic,
immunophenotypic, or genetic abnormalities. In addition,
whole-slide images of BMA smears were similarly pre-
pared from materials from three AML and two MM
patients. These disease cases were selected based on
having high malignant cell content of 30–50% for AML
and 20–30% for MM cases. The 17 nonneoplastic cases
were used to develop and validate software algorithms.
The additional three AML and two MM cases were used
to measure the performance of these algorithms on an
initial set of disease samples. This study was approved by
the Institutional Review Board.

Cell annotation

Whole-slide images were uploaded to a Digital Slide Archive
(DSA) server for visualization and annotation. The DSA
enables web-based viewing, allowing users to pan and zoom
through large whole-slide images, and features a collection of
annotation tools for marking and labeling regions and struc-
tures [16]. The annotation interface is shown in Fig. 1a.
Regions-of-interest (ROIs) for annotation were first selected
using the rectangle or polygon tool and included non-
hemodilute areas of the smears adjacent to bone marrow
spicules where the cells are mostly evenly distributed, cyto-
logically intact, visually distinguishable, and best represent
the spectrum of hematopoiesis. Within these ROIs, other
regions were selected using the polygon tool to exclude

Fig. 1 The Digital Slide Archive (DSA) annotation interface. a ROIs
were defined using the rectangle draw tool, shown in red. Cells within
these regions were then annotated exhaustively using the point tool to
indicate cytologic class. Finally, bounding boxes, shown in green,
were drawn around each annotated cell to delineate the cell boundary
for detection algorithm training. The annotations are organized in
layers in the Annotation menu, at right, where colors, transparency,

and visibility of the annotation markers can be controlled. In addition
to the layers for cytological classes, layers are also provided for the
region-of-interest (“Other”), artifacts (“exclude”), and regions con-
taining mostly red blood cells (“mostly_rbcs”). b Thumbnail images,
representing examples of the 11 cell classes encountered in generating
DCCs plus an unknown class, are presented
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erythrocytes and noncounted cells (macrophages, stromal
cells, mast cells, etc.), that typically would not be included in
DCCs (not shown). Individual cells for the DCC were
annotated using the point annotation tool by placing a single
point at the cell center-of-mass (including nucleus and cyto-
plasm) and assigning each cell to one of the 13 classes shown
in Table 1. The cells within each region were exhaustively
annotated to enable accurate assessment of cell detection
algorithms. Cells of uncertain class, such as those with sub-
optimal cytologic preservation including smudged and/or
naked nuclei, were assigned to an “unknown” class. Mega-
karyocytes were also annotated, but not included in the cell
detection or classification analyses since they are relatively
few and not typically included in DCCs.

Following point annotations, rectangular bounding boxes
were drawn to demarcate the extent of each cell (RC, NK).
These bounding boxes are required to train and validate the
detection algorithm. Additional point annotations were
generated outside ROIs to augment the number of examples
of cell types that inherently occur less frequently in bone
marrow, such as basophils (Table 1). These latter annota-
tions were utilized only during classifier training and neither
for classifier validation, nor for training and validation of
the cell detection algorithm. Cell annotations were based on
well-established cytomorphological criteria used for the
microscopic identification of each cell type [17].

Subsequently, all annotated cells were examined for
cytologic quality and appropriateness of classification
through a consensus review by three pathologists (AAA,
BRD, and DLJ). To accomplish this review, the DSA

application-programming interface was used to extract a
96 × 96 pixel thumbnail image of each annotated cell. These
thumbnail images were next organized into folders by
assigned cell type. The few initially misclassified cells were
identified, and corrections were made to the annotation
database. Representative examples of the cytologic classes
used in our analysis are displayed in Fig. 1b.

Cell detection algorithm

Our cell detection algorithm is based on the Faster Region-
Based Convolutional Network [18]. This network combines
bounding box regression for predicting bounding box
locations, region pooling, and a residual convolutional
network for extracting feature maps from the input images.
Detection was approached by treating all cells as a single
‘object’ class, without regard to actual cytomorphologic
class. The residual network was trained using two equally
weighted loss functions: (1) A cross entropy loss for object
classification and (2) An L1 loss on the bounding box
coordinates and sizes. Proposed regions were then pooled
for computational efficiency, since many proposals are
generated for each object. A pretrained model was used to
initialize the residual convolutional net [19], where the
remaining network components were random normal initi-
alized (zero mean, variance 1e−4). The entire network was
trained for 500 epochs, where an epoch represents one
training pass through all training instances. Training
employed a momentum-based gradient optimization with
momentum 0.9, learning rate 3e−4, weight decay 5e−4,
and dropout fraction 0.2. Non-max suppression with a
threshold of 0.5 was applied to reduce duplicate proposals.

Cell classification algorithm

Cell classes were predicted using the VGG16 convolutional
network [20]. Cell images, sized at 96 × 96 pixels, were
cropped from the center of each manually-generated bound-
ing box. These bounding boxes were mapped to the point
annotations using the Hungarian algorithm applied to the
pairwise distances between each box and each point. These
images were unit normalized to the range [0, 1]. A cross
entropy loss for the 12 classes (including “unknown” and
excluding megakaryocytes) was used for network optimiza-
tion. A pretrained network was used for initialization and then
trained using the gradient descent optimizer with 100 cell
batches and a learning rate of 1e−4 for 500 epochs. Dropout
fraction 0.3 was applied to the fully connected layers.

Data augmentation

Augmentation techniques were utilized in cell detection and
classification to improve prediction accuracy. For cell

Table 1 Counts of annotated cells by cytological class

Cytologic class Total annotated Inside ROI Outside ROI

Erythroid 1526 1396 130

Blast 571 288 283

Promyelocyte 295 112 183

Myelocyte 613 414 199

Metamyelocyte 547 443 104

Band/neutrophil 1036 1005 31

Eosinophil 412 156 256

Basophil 62 21 41

Monocyte 178 109 69

Lymphocyte 544 363 181

Plasma cell 283 86 197

Megakaryocytea 39 14 25

Unknown 3163 3162 1

Total 9269 7569 1700

Annotations outside ROIs were performed to increase counts for rare
classes

ROI region-of-interest
aAnnotated but not used in the cell detection or classification analyses
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detection, we generated randomly cropped 600 × 600 pixel
regions from the ROIs and randomly flipped these hor-
izontally and vertically. For cell classification, we applied
standard augmentation techniques to manipulate the orien-
tation, brightness, and contrast of the cropped cell images.
Each cell image was randomly mirror-flipped along the
horizontal and vertical axes, rotated by an increment of 90°,
brightness adjusted (random_brightness, delta= 0.25), and
contrast adjusted (random_contrast, range [0.9, 1.4]). To
simulate errors in the detection algorithm, we performed a
random translation of up to 5 pixels horizontally and ver-
tically. Testing time augmentation was also performed to
improve classification performance. During inference, 16
augmented instances of each cell were generated. The
softmax values for these augmented versions were then
aggregated to generate a single prediction for each cell.

Detection and classification validation

Nonneoplastic cases were used to perform a sixfold cross-
validation to measure the prediction accuracy of our cell
detection and classification methods. Each training set was
used to develop a cell detection and a cell classification
model. These models were evaluated on the validation test
slides, yielding six total measurements of detection accu-
racy and of classification accuracy in nonneoplastic sam-
ples. To test performance in the AML and MM samples, we
combined data from all 17 nonneoplastic slides to generate
a detection model and a classification model. These models
were then applied to the AML and MM samples to assess
their performance on a small set of neoplastic test cases.

Cells and ROIs from each training slide set were used to
train the detection and classification models using the
manual point and bounding box annotations. These models
were applied to the validation test slides as follows: (1) The
detection model was applied to the test slides to generate
prediction bounding boxes and their probabilities and the
detection accuracy was measured (see details next para-
graph). (2) For detections regarded as true positives (TP),
cell images were cropped and centered at the predicted
bounding box locations. These cells were then used to
evaluate the accuracy of the cell classification model.

Detection accuracy was measured using precision-recall
and intersection-over-union (IoU) analysis. IoU is defined
for any pair of predicted and manually-annotated bounding
boxes, the latter representing the ground truth (gold stan-
dard) bounding box, as the area of box intersection over the
area of box union. This reaches 1 for perfect overlap and 0
for nonoverlapping boxes. The following definitions were
used for precision-recall analysis: (1) TP where a manually-
annotated box has a corresponding predicted box meeting
the IoU threshold. (2) False negative (FN) where a
manually-annotated box has no predicted box meeting the

IoU threshold. (3) False positive (FP) where a predicted box
does not have a corresponding manually-annotated box
meeting the IoU threshold. The Hungarian algorithm was
used to generate a correspondence between manually-
annotated and predicted boxes that maximizes the sum of
IoUs to avoid double counting of manually-annotated boxes
in accuracy calculations. Each predicted bounding box has
an associated confidence score and so a precision-recall
curve is generated using TP, FN, and FP for the range of
detection confidence thresholds from 0 to 1. The area under
this precision recall curve measures detection accuracy over
a broad range of detection sensitivities [21]. In addition, we
measured error in the positioning of predicted bounding
boxes as the difference in location between the predicted
box centers and the matched manually-annotated box cen-
ters. Using the TP correspondence from above, we calcu-
lated the Euclidean distance between box centers and
normalized by the manually-annotated bounding box size
(using half the length of the annotated box diagonal).

Classification accuracy was measured using receiver-
operating characteristic (ROC) analysis. For each classifi-
cation model, we measured the sensitivity and specificity of
a binary classifier for each cell type (this cell type versus all
others) to generate an ROC curve. The area under the ROC
curve (AUC) was measured for each cell type, along with
the macro average (average performance over all classes,
not weighted by class prevalence) to measure class specific
and overall accuracy [22].

Execution time analysis

Analysis of execution times was accomplished using the
python time module. Times were measured for loading the
ROI file from disk, performing detection on the ROI, crop-
ping images for detected cells from the ROI, and performing
cell classification. Execution times were measured for each
ROI in ten trials. Regression analysis was performed to pre-
dict execution time from ROI size and number of detected
cells using least squares. Variables in this analysis were as
follows: (1) the number of detected cells, (2) the square root
of the number of pixels in the ROI, and (3) a constant bias
term. To extrapolate this model to an ROI with 500 detected
cells, we trained a second regression model to relate ROI size
and the logarithm of the number of detected cells.

Software and hardware

We employed the following software tools: Tensorflow
1.8 served as the basic framework for the entire system.
Luminoth v0.2.0 is Tensorflow-based and provided the
detection framework. The Hungarian algorithm was
implemented in Scipy v1.1.0. The OpenCV 3.1.0 library
was used to handle png/jpeg images. All experiments were
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run on a dual-socket server equipped with Intel Xeon CPUs,
128 GB RAM, and two NVIDIA Tesla P100 cards.

Results

Study overview

An overview of our approach is presented in Fig. 2. Data for
training and validating algorithms were generated using a
web-based DSA annotation system (Fig. 1a). Our cell
detection and classification analyses included 11 cytological
classes that constitute those of standard DCCs and an
unknown class (Fig. 1a). These annotations were used to
train a two-stage pipeline consisting of cell detection
(Fig. 2a) and cell classification algorithms (Fig. 2b), both
based on convolutional networks. The accuracy of these
algorithms was evaluated through a sixfold cross-validation
on nonneoplastic samples (Fig. 2c). In addition, the cell
detection and cell classification algorithms were then
trained on all nonneoplastic samples, and tested on a small
set of AML and MM samples to assess their potential
application to neoplastic cells.

Large-scale annotation

Convolutional networks can deliver outstanding perfor-
mance given large training datasets of thousands of exam-
ples that represent the morphological and staining variations
observed in clinical practice [7]. To generate annotations at
sufficient scale, we developed a protocol using the DSA
[16]. A screenshot of the DSA annotation interface is pre-
sented in Fig. 1a with example ROIs, cell annotations, and
bounding boxes. We used the DSA and the annotation
protocol to annotate 9269 nonneoplastic cells that are spe-
cified in Table 1, and included those within ROIs and a
smaller subset outside ROIs. The latter subset increased the

representation of less common cell classes. Annotation
efficiency was improved using a tiered approach that took
into account the expertise and availability of annotators, and
the effort involved. Labeling cell types requires expertise in
the cytomorphology of bone marrow cells. A simple and
efficient point and click method utilizing a mouse was
developed for cell type labeling by pathologists. Since point
annotations alone are not adequate for training detection
algorithms, students performed the more laborious task of
placing rectangular bounding boxes around the preidentified
cells. Although the bounding boxes alone could be utilized
for both localization and cell type labeling, this tiered
approach proved more efficient and allowed us to generate a
much larger number of annotations.

Cell detection with region-proposal networks

Detection results for one representative nonneoplastic ROI
are presented in Fig. 3a. Cells that were missed often had a
corresponding detection bounding box that was close, but
did not have adequate overlap, based on IoU analysis, to be
called a match (Fig. 3a, subpanels 1–4). A number of FP
correspond to cells that were mistakenly not annotated by
our human observers (Fig. 3a, subpanels 5, 6). A precision-
recall analysis was performed to evaluate detection perfor-
mance from the most sensitive to the most specific tuning of
the detection algorithm threshold. The detectors generated
in cross-validation simultaneously achieved high precision
and recall with only minor variation in performance from
fold to fold, as displayed in Fig. 3b. The median area under
precision-recall curves, observed in cross-validation, was
0.959 ± 0.008 (see Table S2). In addition to these discrete
detection errors, we also measured the positional errors in
the placement of predicted bounding boxes. Correct
bounding box placement is critical for the classification
stage, since the center of the predicted boxes is used to
extract cell images for classification. Since the error

Fig. 2 Computational detection and classification of cells in bone
marrow aspirate smears. a Cell detection was performed using a Faster
R-CNN network built on the resnet101 fully convolutional network.
b Following cell detection, a separate convolutional network was used
to classify the detected cells into 12 cytological classes. c Detection
and classification accuracy were evaluated through sixfold cross-

validation to measure detection and classification accuracy using
human annotations of cytological class and bounding box location.
Cross-validation was performed at the case level, so that annotated
cells from each case were assigned entirely to either the training or
testing set
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tolerance for bounding box placement is higher when
detecting larger cells, we developed a relative error measure
that considers both cell size and predicted bounding box
position (see Fig. S1). The median relative placement error
observed in cross-validation was 6% (Fig. 3c), indicating
good coincidence between the centers of predicted and
actual cell centers.

Cell classification and augmentation strategies

Classification results for one representative nonneoplastic
ROI are presented in Fig. 4a. In this example, two
unknowns were misclassified as erythroid precursors, as
shown in subpanels 1, 2. Classifier accuracy was evaluated
using a one-versus-all classifier for each cytologic class.
The classification threshold was varied from the most sen-
sitive to the most specific, generating an ROC profile and
AUC measurement for each class (see Fig. 4b). The median
total AUC for nonneoplastic cells (all classes weighted
equally) observed in cross-validation was 0.982 ± 0.03,
while the median AUC for each class ranged from 0.960
(monocyte) to 1.00 (basophil). All AUCs from cross-
validation cases are displayed in Table S3a, b. A confusion
matrix describing the cross-validation misclassifications is
presented in Fig. 4c. As shown, the most common specific

classification errors were encountered for defined cell types,
particularly monocytes (14%) and lymphocytes (21%),
which were predicted to be unknown cell types. Other
common errors included adjacent cell classes in the myeloid
series: blasts being misclassified as promyelocytes (10%),
myelocytes being predicted to be promyelocytes (8%), and
promyelocytes being predicted to be blasts (7%). Lastly,
lymphocytes were predicted to be erythroid cells (6%) and
monocytes were misclassified as metamyelocytes (7%) or
myelocytes (6%).

We next estimated how these misclassifications might
affect key cell types in the DCC, namely plasma cells and
blasts. The misclassification rates from the confusion matrix
were used to analyze manual DCCs from five patient
samples that represent a clinically relevant spectrum of
plasma cells (N= 2) and blasts (N= 3). We calculated
upper and lower estimates for plasma cell and blast per-
centages, given the importance of these cell types in disease
classification. The projected percentages with lower and
upper error estimates, in parentheses, include 8.6% (7.7%,
8.8%) and 57.2% (50.9%, 57.3%) for plasma cells, and
6.4% (5.4%, 7.4%), 9.6% (8.2%, 12.1%) and 26% (22.1%,
28.0%) for blasts (see Table S4 for complete DCCs).

The aforementioned results are based on nonneoplastic
cells. Since the cytomorphologies of neoplastic cells can

Fig. 3 Cell detection results. a Sample detection result on cross-
validation test ROI. Here, green boxes indicate true-positive detec-
tions, red boxes false negatives missed by the detector, blue boxes
false positives, where a detection does not match ground truth, and
orange boxes the ground-truth annotations that best correspond to false
positives. In many cases (examples in panels 1–4), false positives were
due to insufficient overlap with a ground truth annotation (intersection-
over-union at least 0.5). Some false positives correspond to cells

correctly detected by the algorithm but that were missed during the
annotation process (examples in panels 5, 6). b Precision-recall of
detection algorithm for cross-validation test sets. Shaded region indi-
cates standard deviation of precision-recall over the six cross-
validation sets. c Histogram of cross-validation bounding box place-
ment error. This error measures the distance between predicted and
actual bounding box centers relative to actual bounding box size

104 R. Chandradevan et al.



differ, to varying degrees, from their nonneoplastic counter-
parts, we explored the feasibility of employing the algorithms,
developed using nonneoplastic cells, for detecting and clas-
sifying neoplastic cells. We studied a small set of AML and
MM test cases selected for neoplastic cell content of 20–50%.
In aggregate, 1373 cells were annotated, which included 223
AML blasts and 76 malignant plasma cells (see Table S5 for
all annotated cells). The detection AUC for all cell classes was
0.970 for AML cases and 0.979 for MM cases (see Table S2).
For AML blasts, the classification AUC was 0.893 and that
for MM plasma cells was 0.970 (see Table S3b). Confusion
matrix analysis for the AML cases suggested an overall pre-
dication accuracy of 87.2% for blasts. Interestingly, a subset of
blasts was classified by the algorithm as “unknown”,

something that is often done clinically with neoplastic cells at
the time of manual DCC, until the neoplastic cell lineage is
determined by ancillary studies, then such cells are generally
recategorized into their correct class (e.g., blasts). If blasts that
were counted as unknowns are included as TP here, the pre-
diction accuracy increases to 93.3% (see Table S6). Lastly,
confusion matrix analysis for MM cases suggested a predic-
tion accuracy for neoplastic plasma cells of 96.5%. This
improves to 98.8% if plasma cells that were classified as
unknowns are likewise counted as TP (see Table S6).

Handling detection and classification with two separate
networks provided more flexibility in network design, and
enabled us to employ advanced strategies for data aug-
mentation that had a significant positive impact on

Fig. 4 Cell classification results. a Sample classification result on test
ROI. Predicted class and location of detected cells is indicated with
color-code dots. Classification errors are indicated with a bounding
box in subpanels 1, 2, colored to indicate the annotated cell class.
b Classification area-under-curve on cross-validation test sets. Each
point represents the AUC of one class in one testing fold. Total AUC
was calculated as the average AUC over all classes (unweighted by

class proportions). c Cross-validation confusion matrix indicating the
classification errors that were made for each class. Rows display the
true cell class while columns indicate the cell type predicted by
the classifier. Values are normalized as percentages across rows. The
diagonal shows the proportion of TPs for each cell class. Values
outside of the diagonal represent misclassification rates. Results pre-
sented are aggregated over all cross-validation folds
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classification accuracy. During class inference, each detec-
ted cell was augmented to generate 16 versions with dif-
ferent orientations and intensity transformations, as
displayed in Fig. 5a. The classification network was applied
to these augmented versions, and the predicted class prob-
abilities were aggregated. This procedure improved the total
AUC an average of 5.0% over all cross-validation folds as
displayed in Fig. 5b (see also Table S3a, b). This increase in
classification accuracy was statistically significant (p=
3.12e−2, Wilcoxon signed rank).

We also analyzed the execution time of our algorithms
on a high-performance server equipped with graphical
processing unit accelerators (see Materials and Methods for
configuration). Execution of the detection and classification
models during inference consumed almost all computation
time, with loading and preprocessing consuming only
minimal time (Fig. S2, Table S7). We modeled total
execution time using a regression analysis based on the
number of detected cells and ROI size (Fig. S3). This model
was highly accurate with R2= 0.999. We extrapolated this
model, as detailed in the Materials and Methods, to predict
an average execution time of 162 s for an ROI containing
500 cells.

Discussion

BMA DCC is routinely performed to assess hematopoietic
activity, to compare the proportions of the different cell
lineages with reference ranges, and to quantify abnormal
cells when present. It is generally performed by pathologists
and/or the laboratory technical staff depending on workflow
and the laboratory case volume. While publications vary in
the total number of cells recommended for performance of

DCCs, they generally fall between 300 and 500 cells, but
can vary based on specific clinical circumstances [2, 23, 24].
At the high end, counts of more than 500 cells have been
recommended based on theoretical work that considered the
odds of unacceptable error in classification when initial
counts fall near diagnostic cutoffs for critical cells classes
[1, 25]. Yet, manual DCCs suffer from being labor intensive
with inherent inter- and intraobserver variability in cell
classification and choice of cells counted. Automation of the
DCC could not only obviate these issues, including the
ability to readily analyze the many hundreds to thousands of
pertinent cells on a smear, but also could also afford stan-
dardization. If successfully developed, such a system could
thus have a tremendous impact on the practice of pathology.

One promising method to create an automated DCC sys-
tem, which we explored in this work, is digital image ana-
lysis with machine learning. Images of BMA smears present
significant technical challenges for image analysis algo-
rithms. BMA smears contain cells representing diverse
cytomorphologies with some cell types exhibiting only subtle
differences. A large number of cells in any given smear may
be ambiguous and the boundaries between cells indis-
tinguishable, particularly in areas with clumping. Traditional
image analysis techniques that rely on models of cell
appearance and morphology are difficult to apply in these
scenarios, and may fail to accurately detect and distinguish
closely packed cells from one another, a process called
segmentation. Reliable segmentation is absolutely necessary
to extract shape, texture, and color features that are used for
classification. Importantly, difficulties in segmentation will
often be reflected in poor classification performance. A data-
driven approach, based on machine learning with convolu-
tional networks, can perform classification without explicitly
segmenting cells by relying on detection algorithms to

Fig. 5 Impact of data augmentation on classification performance.
a Data augmentation procedure for inference. A.1 At inference time,
for each detected cell we extracted an image centered at the predicted
bounding box location. A.2 This image is transformed using rotations,
translations, and pixel intensity transforms to generate an “augmented”
set of 16 images for inference. These images are passed through the
classification network to generate 16 total predictions of cytologic
class. Each prediction describes the probabilities that the image

belongs to each of the 12 cytologic classes. These predictions are
aggregated to smooth out noise and to improve robustness. A.3 The
cell in question is assigned to the highest-probability cytologic class
using the aggregated predictions. b This augmentation procedure
significantly improved classification accuracy in cross-validation
experiments (Wilcoxon signed rank test). Each dot represents the
accuracy of one-fold in the cross-validation
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localize cells. This approach also does not rely on a-priori
definitions of cell features for classification, but does require
extensive annotations of data for training and validation of
the detection and classification networks.

To generate sufficient data for such convolutional net-
work approaches, we developed an efficient tiered anno-
tation protocol using the DSA. This web-based platform
facilitated decentralized annotation and review, and helped
to scale our labeled dataset. The tiered protocol utilized
experts to classify cells using a simple point annotation
tool, and students to do the more laborious work of placing
bounding boxes, enabling us to annotate over 10,000 cells
from neoplastic and nonneoplastic cases. This large
dataset allowed us to engineer an analysis pipeline based
on convolutional networks for cell detection and classifi-
cation. This pipeline achieved high detection accuracy on
both nonneoplastic cases in cross-validation (0.959 ± 0.008
AUC), as well as AML (0.970 AUC) and MM (0.979
AUC) test cases. Classification accuracy for all cell types
was also high in non-neoplastic cases (0.982 ± 0.03 ROC
AUC) and largely in AML (0.912 AUC) and MM (0.906
AUC) test cases. Importantly, high classification accuracy
of neoplastic cells will be crucial for developing a diag-
nostic tool for diseases such as AML and MM. In light of
the fact that our classifiers were trained entirely on non-
neoplastic cases, the classification accuracies achieved in
this small test set of AML blasts (0.893 AUC) and MM
plasma cells (0.970 AUC) are promising and represent a
good starting point for further progress. Of note, these
levels approach the performance of a commercially avail-
able clinical image analysis system for blood [26, 27]. In
addition, the estimated effects on blast and plasma cell
percentages from DCCs we calculated using the mis-
classification rates from confusion matrix analysis suggest
that reasonable error ranges are likely to be encountered in
future clinical validation studies. Decoupling the detection
and classification steps provided definite benefits in our
system. As we demonstrated, the ability to perform aug-
mentation of detected cells significantly improved classi-
fication accuracy, increasing the accuracy from 0.917 ±
0.027 to 0.982 ± 0.03 (p= 3.12e−2). Using separate net-
works for detection and classification also improved flex-
ibility in design. Detection and classification tasks have
very different design requirements and creating a single
convolutional network to perform both tasks is difficult and
will likely result in suboptimal overall performance.
Importantly, these two networks will appear seamless to
users of the software once fully optimized. Analysis of
execution time shows that the expected runtime for an ROI
containing 500 cells is <3 min. This performance could be
significantly improved using additional hardware, and can
be largely hidden from the end user by processing slides
offline prior to inspection.

Limited studies have evaluated image analysis in auto-
mating BMA DCCs. Choi et al. [14] published promising
preliminary results using convolutional networks for cell
classification in DCCs. Their dataset comprised 2174 cells
of nonneoplastic erythroid and myeloid precursors, and did
not include other cells types important in DCCs including
eosinophils, basophils, monocytes, lymphocytes, and
plasma cells. This study focused on classification and did
not address detection, utilizing only manually cropped
images of cells to develop and validate the classifier.
Moreover, noise due to the detection process was not
accounted for in their classification. Their reported classi-
fication performance was 0.971 precision at 0.971 recall.
This is comparable to the overall classification performance
for our system that included analysis of all relevant cell
types in the DCC. Reta et al. [15] developed a cell detection
and classification framework for classification of acute
leukemia subtypes. Their dataset comprised 633 cells from
acute lymphoblastic leukemias and AML. They developed
an elaborate software pipeline to detect and segment leu-
kocytes in digital images of Wright-stained BMA smears.
Detected cells were characterized using a set of features that
describe the shape, color, and texture of each cell. These
cells were classified individually using basic machine
learning algorithms, and the cell classifications were
aggregated to provide a single diagnosis for the sample.
While their application is narrow and focuses only on a few
cell types, their reported segmentation accuracy has a high
precision (95.75%) and their subtype classification accuracy
ranged from 0.921 to 0.784 ROC AUC. Our findings
expand the work in these earlier publications and point to
the promise of machine learning approaches towards auto-
mation of DCCs.

In many circumstances, manual examination of BMA
smears employs a ×100 objective (×1000). In this work, we
utilized whole slide images collected at a resolution of
0.25 μm/pixel, which approximates a ×40 objective (×400).
Scanning at ×400 offers useful advantages in digital
pathology workflow. For example, whole slide scanning
beyond ×400 magnification is time consuming, and in
contrast to scanning at ×400, leads to extremely large file
sizes that are impractical to archive [28]. And, while scan-
ning beyond ×400 could become feasible if limited to
smaller ROIs, it requires that these are identified before
scanning. Thus, capturing whole slide images will facilitate
the automation process by avoiding the introduction of
additional human workflow interactions. Moreover, objec-
tives offering magnifications higher than ×400 often require
oil immersion, which can introduce significant challenges,
including difficulties in dispensation and containment of oil
that can contaminate imaging systems and increase main-
tenance requirements. We are currently aware of only one
slide scanning equipment vendor who is pursuing
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high-throughput scanning with oil immersion for clinical
use. Importantly, our results show that images acquired at a
resolution offered by a ×40 objective can form the basis of
compelling detection and classification algorithms for the
specific purpose of cell-type identification for DCCs. The
need for higher resolution images will, nonetheless, likely
be required for applications aimed at detecting and differ-
entiating more subtle cytomorphologic details such as
dysplastic changes, Auer rods, iron particles, and specific
intracellular microorganisms.

In this study, we present highly promising preliminary
results in developing a computational system for DCC of
BMAs. Our approach combines state-of-the-art detection
and classification algorithms based on convolutional net-
works, and achieved excellent performance in detection and
classification tasks. This success was enabled primarily by
extensive annotation and curation of training and validation
data using the DSA. While our results are quite encoura-
ging, this study currently has some important limitations.
First, while we evaluated our system on AML and MM
cases, we did not include cells from these cases in training,
and so the reported classification accuracies for disease
cases are likely subject to improvement. Furthermore, the
number of these disease cases was limited, and certainly did
not represent the full spectrum of hematologic malig-
nancies. Since neoplastic cells often exhibit cytomorpho-
logic differences from benign counterparts, it will be
important to include examples of these cells when training
algorithms to realize optimal performance on disease cases.
Future studies will greatly expand the number of disease
cases, will include other diagnostic categories, and will
grow the training set to cover the wide spectrum of
abnormal cytomorphologies. Second, the small ROIs
employed in this study were biased towards better cytologic
preservation. The performance on random large ROIs
encompassing marrow particles as would typically be ana-
lyzed by pathologists has not been assessed. These areas
contain more highly dense overlapping marrow cells and
stromal cells that will need to be addressed by detection and
classification models. Third, exploration of the potential
benefits of employing higher resolution scanned images will
also be useful as the acquisition and storage of these large
digitized images becomes more practical for clinical use.
Fourth, we have not established performance criteria for
clinical validation of this novel method that is still early in
development, but this will certainly be required before
deploying for clinical use, as it has for automated analysis
of blood smear images [6, 27]. Any automated approach
will ultimately have to be shown to be at least as reliable
and accurate clinically as manual microscopic review of
slides and faster than manual DCC performance, even after
reclassification by pathologists/technologists of any cells
wrongly categorized.

Future annotation efforts will include an interobserver
variability study to better understand the ranges for classi-
fication and detection performance of human observers. The
final software application will also require a convenient
graphical interface that allows users to identify errors and to
manually override the algorithm. While our algorithms
performed well on samples processed in our lab, variations
in preanalytic factors like smearing and staining quality will
impact generalization to other sites, and additional data
collection would be required to deploy the system in other
labs. Nonetheless, the annotation system and protocols
presented here establish a template to generate similar
training and validation data, and results. Once the above
limitations are addressed, the advances made in this study
can be integrated into a practical computerized system with
potential to have significant impact on clinical practice.
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