
Laboratory Investigation (2019) 99:118–127
https://doi.org/10.1038/s41374-018-0125-5

ARTICLE

Trends in the characteristics of human functional genomic
data on the gene expression omnibus, 2001–2017

Daniel D. Liu1
● Lanjing Zhang 2,3,4,5

Received: 8 February 2018 / Revised: 25 July 2018 / Accepted: 15 August 2018 / Published online: 11 September 2018
© United States & Canadian Academy of Pathology 2018

Abstract
The gene expression omnibus (GEO) is the world’s largest public repository of functional genomic data. Despite its broad
use in secondary genomic analyses, the temporal trends in the characteristics of genomic data on GEO, including
experimental procedures, geographic origin, funder(s), and related disease, have not been examined. We identified 75,376
Series deposited to the GEO during 2001–2017 and built a database of all human genomic data (39,076 Series, 51.8% of all
Series). Using the associated publications, we obtained funding information and identified the related disease area. Of
the Series with classified disease areas, the two most common were cancer (n= 12,688, 32.5%) and immunologic diseases
(n= 2,393, 6.1%), while the percentages of all other disease areas were below 5%, including neurological diseases
(n= 1733, 4.4%), infectious diseases (n= 1225, 3.1%), diabetes (n= 828, 2.1%), and cardiovascular diseases (n= 299,
0.8%). In recent years, there has been a significant increase in the use of high-throughput sequencing (HTS), protein array
and multiple-platform technologies, as well as in the proportion of North American deposits. Compared to those from other
regions, North American deposits appeared to lead the shift from array-based to HTS technologies (odds ratio [OR],
95% confidence intervals [CI]= 3.39, 3.23–3.55, P= 9.40E−323), and were less likely to focus on a major disease area
(OR= 0.64, 95% CI: 0.61–0.67, P= 5.02E−107), suggesting a greater emphasis on basic science in North America.
Furthermore, the Series utilizing HTS were less likely to be disease-classified compared to other technologies (OR= 0.39,
95% CI: 0.37–0.41, P= 1.00E−322), suggesting a preferential use or adoption of HTS in basic science settings. Finally,
funding from the NHGRI, NCI, NIEHS, and NCCR resulted in a higher number of GEO Series per grant than other NIH
institutes, demonstrating different preferences on genomic studies among awardees of NIH institutes. Our findings
demonstrate geographic, technological, and funding disparities in the trends of GEO deposit characteristics.

Introduction

The gene expression omnibus (GEO) is the world’s largest
public repository of functional genomic data, founded and
run by the US-based National Center for Biotechnology
Information (NCBI) within the National Library of Medi-
cine at the National Institutes of Health (NIH) [1]. Along
with its European counterpart ArrayExpress [2], such
repositories are central towards fostering reproducibility and
open access in genomic research [3].

GEO data are classified into four entity types: Platform
(GPL), Sample (GSM), Series (GSE), and DataSet (GDS)
[1]. Platform (GPL) records detail the specific technology or
technologies used to obtain data of a given sample. Sample
(GSM) records describe the experimental output of one
individual sample. Series (GSE) records consist of a group
of related Samples within an experiment. Finally, DataSet
(GDS) records are the Series that have been curated by
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GEO staff, normalized to be biologically and statistically
comparable.

Buried within the metadata of GEO deposits, however,
lie broader trends in the research ecosystem. Open-access
genomic databases on human samples are critical for future
advances in oncology and medicine, and have been
expanded significantly in the past decade [4–10]. However,
to date, there have been no in-depth analyses of the trends in
functional genomic data on GEO or ArrayExpress, despite
their growing importance and volume. Such information
could prove especially useful for the research on genomic
medicine [11], public health [12, 13], and science funding
and policy [14].

Here, we developed a database of human GSE alongside
their associated metadata, and identified the temporal trends
in genomic data growth on GEO. Only some of this meta-
data was readily available from the GEO browser; the
disease-of-interest was extracted from experiment summa-
ries, and funding data were extracted from the associated
publications. Probing this database yielded several new
insights on the technology, geographic origin, and research
focus of the functional genomic studies. Most prominently,
we observed a rapid adoption of high-throughput sequen-
cing (HTS) in North America, alongside a shift toward basic
research in human.

Materials and methods

Metadata extraction

We identified and included human GEO series using the
organism keyword of Homo sapiens without any other
search criteria in July 2017, and again in January 2018 for
updates. Metadata on all human GEO Series (GSE) were
downloaded from the GEO repository browser, including
accession codes, title, Series type, release date, and asso-
ciated curated GDS. Geographic origin (i.e., the corre-
sponding author’s affiliation on the record) and
experimental summaries were extracted from each Series’
accession display page using a custom web scraper. For
Series with one or more associated publications, further
metadata were extracted from MEDLINE, a bibliographic
database indexed by the National Library of Medicine. We
extracted the grant numbers under the GR field, and the
medical subject headings from the MH field. Only the
Series uploaded on or before 31 December 2017 were
included in the analyses.

Data curation

From the raw metadata, certain fields were extracted
to facilitate analyses. The Series type indicates both

the general application (e.g., expression profiling or
SNP genotyping) and the technology used (e.g., array or
HTS). Due to the large number of such combinations, we
separated the application and technology for individual
analysis.

We classified each Series into one of the six broad dis-
ease areas using a keywords-based classification strategy:
cancer, cardiovascular diseases, diabetes, immunologic,
infectious diseases, and neurologic diseases. Briefly, we
scanned each Series’ summary for keywords relating to
each disease classification (Supplementary Table 1), and
categorized it into the one with the greatest number of
keyword hits. Those with no keyword hits were categorized
as “unclassified.”

From the grant numbers, we parsed out the specific
National Institutes of Health (NIH) institute(s) funding each
grant, or listed down “other” for non-NIH institutes. During
the data analysis, if a Series was funded by more than one
NIH institute or center, each was counted once. If a Series
was funded by two grants from the same institute, that
institute was counted twice.

Statistical analysis

Statistical analyses including Fischer exact test were
performed using MATLAB (Version R2017a March 2017,
MathWorks). The Joinpoint Regression Program (Version
4.5.0.1. June 2017, Statistical Research and Applications
Branch, National Cancer Institute, Bethesda, MD, USA)
was used to analyze the trends in the number of deposited
Series per annum and subgroup trend-analyses, from
which annual percent change (APC) values were computed
[15]. The model selections were based on permutation
tests in which log transformation was conducted, an
overall P value < 0.05 was considered as significant,
and the number of randomly permuted data sets was
4499. Up to two joinpoints were allowed. All P values were
two-sided.

Results

Of the 75,376 Series deposited on GEO between 2001 and
2017, a total of 39,076 (51.8%) were human samples. Raw
data for the human Series are summarized in Table 1. Fig. 1
shows the descriptive statistics of the Series by geographic
origin, disease classification, genomic application, and
technology. A slight majority of Series (54%) originated
from North America, followed by Europe (28%) and Asia
(15%) (Fig. 1a). Around 48% of Series could be classified
to one of six major disease-categories: in descending order,
cancer (30%), immunologic diseases (9%), neurologic dis-
eases (4%), infectious diseases (3%), diabetes (2%), and
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cardiovascular diseases (1%) (Fig. 1b). The remaining
“unclassified” Series consisted of mostly basic science
studies, and some less prevalent diseases. Genomic

application was dominated by expression profiling (62%),
(Fig. 1c). The majority of the Series were collected using
array technologies (58%) or HTS (26%) (Fig. 1d).

Table 1 Trends in the characteristics of the functional genomic data deposited in the gene expression omnibus (GEO) from 2001–2017

Region Technology Disease area

Year Series GDS Asia Europe N. Am. Other Array HTS Cancer Cardio Diabetes Immune Infectious Neuro Unclass.

2001 4 0 0 1 3 0 2 0 3 0 0 0 0 0 1

2002 38 8 0 3 35 0 28 0 6 0 13 0 1 1 17

2003 186 50 3 24 153 6 178 0 16 4 5 16 12 4 129

2004 268 121 10 58 192 8 253 0 57 9 8 21 12 9 152

2005 468 160 30 100 325 13 408 0 144 7 10 46 23 24 214

2006 612 193 47 177 376 12 538 0 205 7 13 68 22 32 265

2007 860 184 69 239 522 30 706 0 304 3 20 113 26 45 349

2008 1169 120 129 359 641 40 951 16 466 7 28 157 32 45 434

2009 1599 80 170 509 860 60 1252 39 622 5 35 202 32 73 630

2010 2026 84 273 648 1026 79 1538 115 719 18 52 252 62 97 826

2011 2648 200 375 789 1366 118 1990 219 1019 16 50 322 60 115 1066

2012 3088 134 485 1047 1432 124 2215 334 1191 32 66 330 103 148 1218

2013 3514 117 592 1136 1670 116 2438 480 1325 18 80 363 90 181 1457

2014 4002 112 742 1322 1758 180 2522 810 1417 40 85 436 120 206 1698

2015 4551 30 784 1550 2045 172 2713 1037 1618 38 105 486 152 226 1926

2016 6147 2 970 1401 3586 190 2409 2905 1713 61 145 517 150 289 3272

2017 7896 0 1156 1557 4957 226 2325 4379 1821 40 130 340 187 316 5062

Total 39,076 1595 5835 10,920 20,947 1374 22,466 10,334 12,688 299 828 2393 1225 1733 19910

Note: N. Am. North America; HTS high-throughput sequencing; cardio cardiovascular diseases; immune immunologic diseases; neuro neurologic
diseases; unclass. unclassified. All deposits not fit in any of the six disease areas were categorized as unclassified

Fig. 1 Summary statistics. a Geographic origin of submitted GSE. b Area of study for submitted GSE. c Platform usage, separated into application
(left) and technology (right)
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We next sought to discover trends in these data over
time. In regards to the number of Series deposited per year,
we identified two segments of growth (one joinpoint),
namely 2001–2009 (APC= 43.6, P < 0.001) and
2009–2017 (APC= 20.3, P < 0.001). Sharp fluctuations
were found in the number of DataSets (GDS) curated from
each year (Fig. 2). GDS curation grew rapidly from 2001 to
2006, when it peaked at 193, but following this period, a
very low number of Series were curated from 2008 to 2010.
In 2011 there was a sudden jump up to 200 GDS, but the
number has since dropped to zero.

There were also trends in the geographic origin of Series
(Fig. 3). When GEO was launched, a vast majority of the
submitted Series originated from North America. With each
passing year, however, Europe and Asia represented an
increasingly large proportion of submitted Series. This trend
took a dramatic turn in 2015, after which the proportion of
North American Series sharply increased (Fig. 3a). Analysis
of the raw number of Series per year shows that European
deposits have plateaued around 2012, with other regions
still steadily growing (Fig. 3b).

Given the rapidly evolving nature of genomics, it is
perhaps unsurprising that there were changing trends in the
genomic technologies used for producing the deposited
human genomic data. While array-based technologies

initially predominated, HTS rapidly overtook it in 2016
(Fig. 4a). The number of HTS Series deposited per year has
been exponentially increasing (APC= 79 for 2009–2017,
P < 0.001), while arrays have nearly plateaued in recent
years (APC= 3.4 for 2011–2017, P= 0.07) (Fig. 4b, Sup-
plementary Table S2). There has also been a sustained
increase in the number of Series using “other” technologies
(APC= 59 for 2001–2017, P < 0.001), possibly reflecting
the growing number of emerging functional genomic tech-
niques. Interestingly, Series originated from North America
were 3 times more likely to use HTS technology compared
to those from other regions (OR= 3.39), a gap that dra-
matically widened after 2015 (OR2017= 5.52) (Fig. 4c,
Table 2).

We next investigated trends in the Series’ disease-of-
interest over time. The proportion of Series that could be
classified to one of the six major disease-categories
increased steadily from 2003 to around 2008, after which
it remained steady at around 60% (Fig. 5a, b). However,
starting in 2015, the proportion of Series related to major
disease area dropped sharply, down to 36% in 2017. This
reflects an increase in “unclassified” Series focusing on
basic science and less prevalent diseases. Nevertheless, all
six disease classifications still saw a steady growth in the
number of Series per year (Supplementary Table S3). The

Fig. 2 Curated datasets.
a Absolute number of curated
DataSets (GDS). Year indicates
the submission date of the
associated Series (b) Proportion
of each years’ submitted GSE
that have been curated into GDS

Fig. 3 Geographic distribution. a Proportion and b absolute number of datasets originating from specific geographical regions. Absolute numbers
for 2017 are projected off the first 3 months of the year
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decreasing proportion of disease-classified Series was due
almost entirely to those of North America, which dropped
from 59% disease-classified in 2015 to just 25% in 2017,
while there was no change for the rest of the world (Fig. 5c,
Table 3). Importantly, Series utilizing HTS were sig-
nificantly less likely to be disease-classified compared to
other technologies (OR= 0.39), suggesting a preferential
use or adoption of HTS in basic science settings (Fig. 5d,
Table 4).

Finally, we assessed trends in the funding sources
of Series with associated publication(s) indexed in the
MEDLINE. Funding information could only be extracted
and analyzed for Series with associated publications,
accounting for ~68% of all Series. Of the grants with
associated publications indexed in MEDLINE, the large
majority (86%) were funded by the U.S. NIH. The NIH
institutes funding the greatest proportion of Series were, in
descending order, the National Cancer Institute (NCI, 33%),
National Institute on Aging (NIA, 11%), National Institute

of General Medical Sciences (NIGMS, 7.7%), National
Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK, 6.7%), and National Heart, Lung, and Blood
Institute (NHLBI, 6.6%). There were no significant trends
in funding sources over time (Fig. 5e). However, simply
assessing the proportion of Series funded by a particular
agency can be misleading, as larger agencies can naturally
fund more studies. To address this, we normalized the
number of Series funded by each NIH institute to the total
number of grants funded by that institute, giving the pro-
portion of grants that result in a GEO Series. The overall
NIH proportion was 0.063, or nearly one Series produced
per 16 grants. Five institutes were above this level: unsur-
prisingly, the National Human Genome Research Institute
(NHGRI, 0.49), followed by the NIA (0.19), NCI (0.18),
National Center for Research Resources (NCRR, 0.12), and
National Institute of Environmental Health Sciences
(NIEHS, 0.085) (Fig. 5f). The NIH was not more likely to
fund disease-classified studies compared with non-US

Fig. 4 Genomic platform usage. a Proportion of datasets using certain technologies, by year. b Joint point analysis of each technology’s absolute
growth. c Proportion of datasets using high-throughput sequencing (HTS) in North America vs. other regions from 2008 onwards
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agencies (OR= 1.02, P= 0.677) (Supplementary
Table S4).

Discussion

Since its inception in 2001, the GEO has become a mainstay
of molecular biology research [1]. Its exponential growth
reflects an evolving research environment where HTS
technologies are increasingly used in human genomic
studies. GEO metadata thus present a valuable resource
in analyzing trends in the research ecosystem. This study,
to our best knowledge, represents the first in-depth study
of human GEO Series, encompassing geography, disease of
interest, funding sources, genomic application, and tech-
nology. The summary database curated here is powerful
because it not only allows for analysis of descriptive sta-
tistics and trends, but also correlations that offer clues as to
the origin of specific trends.

Curated DataSets (GDS) are very valuable tools for
researchers. They are normalized to be biologically com-
parable, and are compatible with a suite of data display and
analysis tools offered by GEO. Thus, the sharp decline in
GDS records in recent years may be troublesome for high-
quality, secondary genomic analyses. However, due to the
increasing use and availability of free bioinformatics
packages [16–20], normalization of functional genomic data
is no longer a difficult task. It was likely deemed that
the curation process is no longer of sufficient priority to the
research community.

The predominant geographic origin of the GEO data has
taken some interesting turns. Although the repository was
becoming increasingly international, North American
deposits once again began dominating after 2015. This was

due to a sharp increase in North American deposits as
well as a plateau in European ones. The reason behind
these trends is not clear, but it is not likely the case that
Europeans are now preferentially depositing on ArrayEx-
press, which continues to see only linear growth in their
number of deposits [2].

Of note, it seems that North America is spearheading the
sharp rise in HTS technologies in recent years, although its
use is increasing in other regions as well. This finding is
consistent with the fact that the U.S. has invested more in
genomic research than any other country in the world [14].
HTS encompasses a variety of techniques, including ChIP-
seq for genome binding profiling, and RNA-seq for tran-
scriptome profiling. RNA-seq has some advantages over
array-based technologies, being superior for detecting low-
abundance transcripts, biologically distinct isoforms, and
genetic variants [21, 22]. As sequencing becomes increas-
ingly cheaper per base, and analysis software more wide-
spread, RNA-seq may continue to overtake array-based
technologies.

Interestingly, HTS was less likely to be used to study one
of the six major disease areas. This suggests that HTS, as
a relatively new technology, is still largely used for basic
science and is still in the process of being adopted for
more disease-specific applications (likely clinical studies).
Nevertheless, this shifting technology carries important
implications for the use of genomic data in clinical deci-
sions and precision medicine [9, 23, 24]. Indeed, Array-
based transcriptomics are already being used for cancer
diagnosis [25, 26], staging and prognosis [27–30]. More-
over, the unique ability of RNA-seq to detect gene fusions
and disease-associated isoforms appears to be an advantage
for a clinical tool development [31], although comparatively
few RNA-seq-based clinical tests currently exist [32, 33].

Table 2 Association between
human GEO deposits’
technology used (high-
throughput sequencing
technology vs. other methods)
and their corresponding
geographic origin (North
America vs. other regions) from
2008 to 2017

North America Other regions

Year HTS Other method HTS Other method OR 95% CI P value

2008 18 623 3 525 5.06 1.48–17.26 3.59E−03

2009 40 820 9 730 3.96 1.91–8.21 5.70E−05

2010 106 920 46 954 2.39 1.67–3.42 8.07E−07

2011 165 1201 100 1182 1.62 1.25–2.11 2.74E−04

2012 240 1192 173 1483 1.73 1.40–2.13 3.27E−07

2013 360 1310 233 1611 1.90 1.59–2.28 2.16E−12

2014 549 1209 413 1830 2.01 1.74–2.33 7.93E−21

2015 726 1319 488 2017 2.27 1.99–2.60 7.31E−34

2016 2436 1150 684 1877 5.81 5.20–6.50 1.31E−229

2017 3643 1313 983 1955 5.52 5.00–6.09 6.33E−270

Total 8283 (22.6%) 11,057 (30.2%) 3132 (8.5%) 14,164 (38.7%) 3.39 3.23–3.55 9.40E−323

Note: Odds ratio (OR) represents the odds that a GEO deposit using HTS originated from North America. No
deposits using HTS were identified in the GEO prior to 2008. HTS high-throughput sequencing; CI
confidence intervals
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As HTS becomes increasingly prevalent in the research
world, clinicians will need to adapt so as to be able to
effectively collect, analyze, and interpret data of such
formats.

Of the investigated disease areas, there was a dominance
of unclassified (likely basic research), cancer, and immu-
nological diseases in the GEO deposits. The low percen-
tages of GEO deposits in other disease areas, such as

cardiovascular disease, may be concerning because the lack
of sufficient human genomic data and understanding in the
field may limit the development of genomics-based diag-
nostics and treatments [10, 31, 34, 35]. Related to this
finding, the higher number of GEO Series per grant in select
NIH institutes likely reflects a greater preference for and
awareness of genomic data among the NIH-sponsored
researchers. Perhaps a more interesting question is whether

Fig. 5 Disease classifications and funding sources. a Proportion and
b absolute number of Series studying one of six major disease areas
over time. c Proportion of datasets classified to a major disease area,
from North America vs. other regions. d Proportion of studies that
classified to a major disease, for those using high-throughput

sequencing vs. those that used other technologies. e Source of fund-
ing for human series with associated publications. f Ranked list of NIH
institutions, by what proportion of grants produced a GEO deposit.
Error bars represents standard error
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the research areas with fewer per-grant GEO deposits would
need more genomic studies. This question may have pro-
found clinical applications and present unique research
opportunities. We found that cancer and basic science

dominated GEO deposits, consistent with the largest
funding sources (such as the NCI). On the other hand,
endocrinological (diabetes, for example), neurological,
and cardiovascular diseases lagged far behind. Due to

Table 3 Association between
human GEO deposits’
geographic origin (North
America vs. other regions) and
their corresponding disease area
(related to a major disease area
or unclassified) from 2001 to
2017

North America Other regions

Year Related to major
disease area

Unclassified Related to major
disease area

Unclassified OR 95% CI P value

2001 0 0 0 0 - - -

2002 19 16 2 1 0.59 0.05–7.17 >0.99

2003 44 109 13 20 0.62 0.28–1.36 0.297

2004 87 105 29 47 1.34 0.78–2.31 0.339

2005 168 157 86 57 0.71 0.48–1.06 0.107

2006 203 173 144 92 0.75 0.54–1.04 0.094

2007 312 210 199 139 1.04 0.79–1.37 0.831

2008 414 227 321 207 1.18 0.93–1.49 0.201

2009 522 338 447 292 1.01 0.83–1.23 0.959

2010 601 425 599 401 0.95 0.79–1.13 0.557

2011 814 552 768 514 0.99 0.84–1.15 0.874

2012 844 588 1026 630 0.88 0.76–1.02 0.09

2013 954 716 1103 741 0.90 0.78–1.02 0.107

2014 1001 757 1303 941 0.95 0.84–1.08 0.479

2015 1206 839 1419 1087 1.10 0.98–1.24 0.117

2016 1394 2192 1481 1080 0.46 0.42–0.51 6.84E−49

2017 1248 3709 1586 1353 0.29 0.26–0.32 3.46E−145

Total 9831 (25.2%) 11,113
(28.4%)

10,526 (26.9%) 7602 (19.5%) 0.64 0.61–0.67 5.02E−107

Note: Odds ratio (OR) represents the odds that a disease-specific GEO deposit originated from North
America. The 6 major disease areas were cancer, cardiovascular diseases, diabetes, immunologic diseases,
infectious diseases, and neurologic diseases, while all deposits not fitting in any of the six disease areas were
categorized as unclassified. CI confidence intervals

Table 4 Association between
the human GEO deposits’
technology used (high-
throughput sequencing vs.
others) and their corresponding
disease area (related to a major
disease area or unclassified)
from 2008 to 2017

High-throughput sequencing Other technology

Year Related to major
disease area

Unclassified Related to major
disease area

Unclassified OR 95% CI P value

2008 15 6 720 428 1.49 0.57–3.86 0.499

2009 29 20 940 610 0.94 0.53–1.68 0.882

2010 81 71 1119 755 0.77 0.55–1.07 0.123

2011 149 116 1433 950 0.85 0.66–1.10 0.235

2012 211 202 1659 1016 0.64 0.52–0.79 2.99E-05

2013 280 313 1777 1144 0.58 0.48–0.69 1.39E-09

2014 466 497 1838 1201 0.61 0.53–0.71 5.32E-11

2015 644 571 1981 1355 0.77 0.68–0.88 1.27E-04

2016 1041 2079 1834 1193 0.33 0.29–0.36 1.31E-102

2017 1201 3425 1633 1636 0.35 0.32–0.39 6.76E-106

Total 4117 (11.2%) 7300 (19.9%) 14934 (40.8%) 10288 (28.1%) 0.39 0.37–0.41 1.00E-322

Note: Odds ratio (OR) represents the odds that a high-throughput sequencing study produced a disease-
specific GEO deposit. The six major disease areas were cancer, cardiovascular diseases, diabetes,
immunologic diseases, infectious diseases, and neurologic diseases, while all deposits not fit in any of the six
disease areas were categorized as unclassified. No deposits using HTS were identified in the GEO prior to
2008. HTS high-throughput sequencing; CI confidence intervals
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the faster accumulation of human genomic data and
deeper understanding of cancer, cancer biologists, pathol-
ogists, and oncologists will more likely take advantage
of genome-based diagnostics and targeted therapies than
their colleagues in the fields with fewer genomic data
deposits [4, 5, 36]. These advances in cancer will lead to
more rapid and profound benefits for cancer patients.

In conclusion, we report increasing trends in GEO
deposits (1) using HTS methods, (2) originating from North
America, and (3) focusing on basic science applications.
Cancer, immunological disease, and neurological diseases
were the three disease areas with most deposits on the GEO.
We also show that the NHGRI, NCI, NIEHS, and NCCR
had a higher number of per-grant GEO Series than other
NIH institutes and centers. More studies are needed to
elucidate our observations. Our findings nonetheless may
shed light on shaping future functional genomics-based
research and clinical priorities.
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