Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic testing strategies in the newborn

Subjects

Abstract

Genetic disorders presenting in the neonatal period can have a significant impact on morbidity and mortality. Early diagnosis can facilitate timely prognostic counseling to families and possibility of precision care, which could improve outcome. As availability of diagnostic testing expands, the required knowledge base of the neonatologist must also expand to include proper application and understanding of genetic testing modalities, especially where availability of clinical genetics consultation is limited. Herein, we review genetic tests utilized in the neonatal intensive care unit (NICU) providing background on the technology, clinical indications, advantages, and limitations of the tests. This review will span from classic cytogenetics to the evolving role of next generation sequencing and its impact on the management of neonatal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: This figure outlines a diagnostic approach to a neonate with muliple congenital anomalies.
Fig. 2: Next generation sequencing: DNA is extracted from the patient sample and fragmented.

Similar content being viewed by others

References

  1. Yang L, Liu X, Li Z, Zhang P, Wu B, Wang H, et al. Genetic aetiology of early infant deaths in a neonatal intensive care unit. J Med Genet. 2019. https://doi.org/10.1136/jmedgenet-2019-106221.

  2. McCandless SE, Brunger JW, Cassidy SB. The burden of genetic disease on inpatient care in a children’s hospital. Am J Hum Genet. 2004;74:121–7.

    Article  CAS  PubMed  Google Scholar 

  3. French CE, Delon I, Dolling H, Sanchis-Juan A, Shamardina O, Mégy K, et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Med. 2019;45:627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petrikin JE, Willig LK, Smith LD, Kingsmore SF. Rapid whole genome sequencing and precision neonatology. Semin Perinatol. 2015;39:623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, et al. Whole-genome sequencing for optimized patient management. Sci Transl Med. 2011;3:87re3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Farnaes L, Hildreth A, Sweeney NM, Clark MM, Chowdhury S, Nahas S, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. NPJ Genom Med. 2018;3:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tjio JH, Levan A. The chromosome number of man. Hereditas. 1956;42:1–6.

    Article  Google Scholar 

  8. Pasquier L, Fradin M, Chérot E, Martin-Coignard D, Colin E, Journel H, et al. Karyotype is not dead (yet)! Eur J Med Genet. 2016;59:11–15.

    Article  PubMed  Google Scholar 

  9. Huber D, Voith von Voithenberg L, Kaigala GV. Fluorescence in situ hybridization (FISH): history, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018;1:15–24.

    Article  Google Scholar 

  10. Cui C, Shu W, Li P. Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol. 2016;4. https://doi.org/10.3389/fcell.2016.00089.

  11. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, et al. 22q11.2 deletion syndrome. Nat Rev Dis Prim. 2015;1:1–19.

    Google Scholar 

  12. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2019. https://doi.org/10.1038/s41436-019-0686-8.

  13. Manning M, Hudgins L, Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12:742–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J-C, Ross L, Mahon LW, Owen R, Hemmat M, Wang BT, et al. Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility. Eur J Hum Genet. 2015;23:663–71.

    Article  PubMed  CAS  Google Scholar 

  16. Ballif BC, Rorem EA, Sundin K, Lincicum M, Gaskin S, Coppinger J, et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A. 2006;140:2757–67.

    Article  PubMed  Google Scholar 

  17. Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B, Gibson JS, et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch Pathol Lab Med. 2015;139:481–93.

    Article  PubMed  Google Scholar 

  18. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    Article  CAS  PubMed  Google Scholar 

  20. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  CAS  PubMed  Google Scholar 

  22. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem. 2013;6:287–303.

    Article  CAS  Google Scholar 

  23. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–5.

    Article  CAS  PubMed  Google Scholar 

  28. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–8.

    Article  CAS  PubMed  Google Scholar 

  29. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–7.

    Article  CAS  PubMed  Google Scholar 

  30. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lincoln SE, Truty R, Lin C-F, Zook JM, Paul J, Ramey VH, et al. A rigorous interlaboratory examination of the need to confirm next-generation sequencing–detected variants with an orthogonal method in clinical genetic testing. J Mol Diagn. 2019;21:318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19:249–55.

    Article  PubMed  Google Scholar 

  34. Baruch S, Hudson K. Civilian and military genetics: nondiscrimination policy in a post-GINA world. Am J Hum Genet. 2008;83:435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hellwig LD, Turner C, Manolio TA, Haigney M, James CA, Murray B, et al. Return of secondary findings in genomic sequencing: Military implications. Mol Genet Genom Med. 2019;7:e00483.

    Article  Google Scholar 

  36. De Castro M, Biesecker LG, Turner C, Brenner R, Witkop C, Mehlman M, et al. Genomic medicine in the military. NPJ Genom Med. 2016;1:15008.

    Article  PubMed  PubMed Central  Google Scholar 

  37. ACMG Board of Directors Points to consider for informed consent for genome/exome sequencing. Genet Med. 2013;15:748–9.

    Article  Google Scholar 

  38. Shellhaas RA, Wusthoff CJ, Tsuchida TN, Glass HC, Chu CJ, Massey SL, et al. Profile of neonatal epilepsies: characteristics of a prospective US cohort. Neurology. 2017;89:893–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, et al. Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol Syndromol. 2016;7:210–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol. 2013;168:557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stanley CA. Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders. J Clin Endocrinol Metab. 2016;101:815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Togawa T, Sugiura T, Ito K, Endo T, Aoyama K, Ohashi K, et al. Molecular genetic dissection and neonatal/infantile intrahepatic cholestasis using targeted next-generation sequencing. J Pediatr. 2016;171:171–7.e1–4.

    Article  PubMed  Google Scholar 

  43. Daoud H, Luco SM, Li R, Bareke E, Beaulieu C, Jarinova O, et al. Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit. Can Med Assoc J. 2016;188:E254–60.

    Article  Google Scholar 

  44. Brunelli L, Jenkins SM, Gudgeon JM, Bleyl SB, Miller CE, Tvrdik T, et al. Targeted gene panel sequencing for the rapid diagnosis of acutely ill infants. Mol Genet Genom Med. 2019;7:e00796.

    Google Scholar 

  45. Diemen CC, van, Kerstjens-Frederikse WS, Bergman KA, Koning TJ, de, Sikkema-Raddatz B, Velde JKvander, et al. Rapid targeted genomics in critically ill newborns. Pediatrics. 2017;140:e20162854.

    Article  PubMed  Google Scholar 

  46. Kernohan KD, Hartley T, Naumenko S, Armour CM, Graham GE, Nikkel SM, et al. Diagnostic clarity of exome sequencing following negative comprehensive panel testing in the neonatal intensive care unit. Am J Med Genet A. 2018;176:1688–91.

    Article  PubMed  Google Scholar 

  47. Elliott AM, du Souich C, Lehman A, Guella I, Evans DM, Candido T, et al. RAPIDOMICS: rapid genome-wide sequencing in a neonatal intensive care unit-successes and challenges. Eur J Pediatr. 2019;178:1207–18.

    Article  CAS  PubMed  Google Scholar 

  48. Meng L, Pammi M, Saronwala A, Magoulas P, Ghazi AR, Vetrini F, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 2017;171:e173438.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Powis Z, Hagman KDF, Speare V, Cain T, Blanco K, Mowlavi LS, et al. Exome sequencing in neonates: diagnostic rates, characteristics, and time to diagnosis. Genet Med. 2018;20:1468–71.

    Article  PubMed  Google Scholar 

  50. Stark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med. 2016;18:1090–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kingsmore SF, Cakici JA, Clark MM, Gaughran M, Feddock M, Batalov S, et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am J Hum Genet. 2019;105:719–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. LaDuca H, Farwell KD, Vuong H, Lu H-M, Mu W, Shahmirzadi L, et al. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PloS ONE. 2017;12:e0170843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci USA. 2015;112:5473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Petrikin JE, Cakici JA, Clark MM, Willig LK, Sweeney NM, Farrow EG, et al. The NSIGHT1-randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. NPJ Genom Med. 2018;3:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.

    Article  CAS  PubMed  Google Scholar 

  56. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lisa Salz, LCGC, and Mary Willis, MD, PhD, for their critical edits regarding pretest counseling.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and review of this manuscript.

Corresponding author

Correspondence to Jeanne Carroll.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, J., Wigby, K. & Murray, S. Genetic testing strategies in the newborn. J Perinatol 40, 1007–1016 (2020). https://doi.org/10.1038/s41372-020-0697-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-0697-y

This article is cited by

Search

Quick links