Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum podocalyxin at 11–13 weeks of gestation in the prediction of small for gestational age neonates

Abstract

Objective

To investigate a potential new marker for the prediction of small for gestational age (SGA) infants.

Study design

Nested case-control study involving 280 uncomplicated pregnancies and 70 cases of SGA without pre-eclampsia. Serum podocalyxin was measured at 11–13 weeks of gestation and results were expressed in multiples of the median (MoM). The performance of screening by a combination of maternal history and podocalyxin levels was assessed with ROC curves.

Results

SGA was predicted by maternal age, height, South Asian ethnicity, and previous delivery without pre-eclampsia. Median podocalyxin levels were higher in affected than uncomplicated pregnancies (1.303 versus 0.994 MoM, p < 0.001). At a 10% false-positive rate, maternal history identified 40.0% of the cases (AUC = 0.74, 95%CI 0.671–0.809). The addition of podocalyxin increased the detection to 54.3% (AUC = 0.78, 95%CI 0.771–0.842, p = 0.027 for the difference in ROC curves).

Conclusion

First-trimester podocalyxin may be useful in screening for SGA infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Devaskar SU, Chu A. Intrauterine growth restriction: hungry for an answer. Physiology (Bethesda). 2016;31:131–46.

    CAS  Google Scholar 

  2. Militello M, Pappalardo EM, Ermito S, Dinatale A, Cavaliere A, Carrara S. Obstetric management of IUGR. J Prenat Med. 2009;3:6–9.

    PubMed  PubMed Central  Google Scholar 

  3. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.

    Article  CAS  Google Scholar 

  4. Kiserud T, Benachi A, Hecher K, Perez RG, Carvalho J, Piaggio G, et al. The World Health Organization fetal growth charts: concept, findings, interpretation, and application. Am J Obstet Gynecol. 2018;218(2S):S619–S629.

    Article  Google Scholar 

  5. Ananth CV, Vintzileos AM. Distinguishing pathological from constitutional small for gestational age births in population-based studies. Early Hum Dev. 2009;85:653–8.

    Article  Google Scholar 

  6. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003;69:1–7.

    Article  CAS  Google Scholar 

  7. Garovic VD. The role of the podocyte in preeclampsia. Clin J Am Soc Nephrol. 2014;9:1337–40.

    Article  CAS  Google Scholar 

  8. Wang Y, Zhao S, Loyd S, Groome LJ. Increased urinary excretion of nephrin, podocalyxin, and betaig-h3 in women with preeclampsia. Am J Physiol Renal Physiol. 2012;302:F1084–1089.

    Article  CAS  Google Scholar 

  9. Horvat R, Hovorka A, Dekan G, Poczewski H, Kerjaschki D. Endothelial cell membranes contain podocalyxin–the major sialoprotein of visceral glomerular epithelial cells. J Cell Biol. 1986;102:484–91.

    Article  CAS  Google Scholar 

  10. Chen Q, Wang Y, Li Y, Zhao M, Nie G. Serum podocalyxin is significantly increased in early-onset preeclampsia and may represent a novel marker of maternal endothelial cell dysfunction. J Hypertens. 2017;35:2287–94.

    Article  CAS  Google Scholar 

  11. Mansilla M, Wang Y, Hyett J, da Silva Costa F, Nie G. Serum podocalyxin for early detection of preeclampsia at 11–13 weeks of gestation. Placenta. 2018;71:13–15.

    Article  CAS  Google Scholar 

  12. Tan MY, Poon LC, Rolnik DL, Syngelaki A, de Paco Matallana C, Akolekar R, et al. Prediction and prevention of small-for-gestational-age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol. 2018;52:52–59.

    Article  CAS  Google Scholar 

  13. Tan MY, Syngelaki A, Poon LC, Rolnik DL, O’Gorman N, Delgado JL, et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation. Ultrasound Obstet Gynecol. 2018;52:186–95.

    Article  CAS  Google Scholar 

  14. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017;377:613–22.

    Article  CAS  Google Scholar 

  15. Sovio U, White IR, Dacey A, Pasupathy D, Smith GCS. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet. 2015;386:2089–97.

    Article  Google Scholar 

  16. Figueras F, Caradeux J, Crispi F, Eixarch E, Peguero A, Gratacos E. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S790–S802 e791.

    Article  Google Scholar 

  17. Park FJ, Leung CH, Poon LC, Williams PF, Rothwell SJ, Hyett JA. Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Aust N Z J Obstet Gynaecol. 2013;53:532–9.

    Article  Google Scholar 

  18. Dobbins TA, Sullivan EA, Roberts CL, Simpson JM. Australian national birthweight percentiles by sex and gestational age, 1998-2007. Med J Aust. 2012;197:291–4.

    Article  Google Scholar 

  19. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2018. https://www.R-project.org/.

  20. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77.

    Article  Google Scholar 

  21. Poon LC, Zaragoza E, Akolekar R, Anagnostopoulos E, Nicolaides KH. Maternal serum placental growth factor (PlGF) in small for gestational age pregnancy at 11(+0) to 13(+6) weeks of gestation. Prenat Diagn. 2008;28:1110–5.

    Article  Google Scholar 

  22. Poon LC, Syngelaki A, Akolekar R, Lai J, Nicolaides KH. Combined screening for preeclampsia and small for gestational age at 11-13 weeks. Fetal Diagn Ther. 2013;33:16–27.

    Article  Google Scholar 

  23. O’Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, Poon LC, et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am J Obstet Gynecol. 2016;214:103 e101–103 e112.

    Article  Google Scholar 

  24. Rolnik DL, Wright D, Poon LCY, Syngelaki A, O’Gorman N, de Paco Matallana C, et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol. 2017;50:492–5.

    Article  CAS  Google Scholar 

  25. Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):402–14.

    Article  Google Scholar 

  26. Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. Brit Med J. 2013;346:f108.

    Article  Google Scholar 

  27. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–41.

    Article  CAS  Google Scholar 

  28. Lindqvist PG, Molin J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol. 2005;25:258–64.

    Article  CAS  Google Scholar 

  29. Backe B, Nakling J. Effectiveness of antenatal care: a population based study. Br J Obstet Gynaecol. 1993;100:727–32.

    Article  CAS  Google Scholar 

  30. Thilaganathan B. Ultrasound fetal weight estimation at term may do more harm than good. Ultrasound Obstet Gynecol. 2018;52:5–8.

    Article  CAS  Google Scholar 

  31. Georgiou HM, Thio YS, Russell C, Permezel M, Heng YJ, Lee S, et al. Association between maternal serum cytokine profiles at 7-10 weeks’ gestation and birthweight in small for gestational age infants. Am J Obstet Gynecol. 2011;204:415 e411–415 e412.

    Article  Google Scholar 

  32. Woo I, Chan Y, Sriprasert I, Louie K, Ingles S, Stanczyk F, et al. The role of angiogenic markers in adverse perinatal outcomes: fresh versus frozen embryo transfers. J Assist Reprod Genet. 2017;34:1639–43.

    Article  Google Scholar 

  33. Boucoiran I, Thissier-Levy S, Wu Y, Wei SQ, Luo ZC, Delvin E, et al. Risks for preeclampsia and small for gestational age: predictive values of placental growth factor, soluble fms-like tyrosine kinase-1, and inhibin A in singleton and multiple-gestation pregnancies. Am J Perinatol. 2013;30:607–12.

    PubMed  Google Scholar 

  34. Hentschke MR, Lucas LS, Mistry HD, Pinheiro da Costa BE, Poli-de-Figueiredo CE. Endocan-1 concentrations in maternal and fetal plasma and placentae in pre-eclampsia in the third trimester of pregnancy. Cytokine. 2015;74:152–6.

    Article  CAS  Google Scholar 

  35. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374:13–22.

    Article  CAS  Google Scholar 

  36. Spiel M, Salahuddin S, Pernicone E, Zsengeller Z, Wang A, Modest AM, et al. Placental soluble fms-like tyrosine kinase expression in small for gestational age infants and risk for adverse outcomes. Placenta. 2017;52:10–16.

    Article  CAS  Google Scholar 

  37. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction. Hypertension. 2012;60:437–43.

    Article  CAS  Google Scholar 

  38. Thilaganathan B. Pre-eclampsia and the cardiovascular-placental axis. Ultrasound Obstet Gynecol. 2018;51:714–7.

    Article  CAS  Google Scholar 

  39. Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124:2839–46.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the patients for donating blood samples for this study.

Funding

This work was supported by National Health and Medical Research Council of Australia (Fellowship#1041835 and project grant #1108365 to GN), Bill and Melinda Gates Foundation, and the Victorian State Government Operational Infrastructure Scheme.

Author information

Authors and Affiliations

Authors

Contributions

FdSC, GN, and JH conceptualized the study. JH provided the patient samples. YW performed the laboratory analysis under the supervision of GN. DLR did the statistical analysis, and DLR and YW wrote the manuscript. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Guiying Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolnik, D.L., Wang, Y., Hyett, J. et al. Serum podocalyxin at 11–13 weeks of gestation in the prediction of small for gestational age neonates. J Perinatol 39, 784–790 (2019). https://doi.org/10.1038/s41372-019-0370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-019-0370-5

Search

Quick links