Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular changes in fetal growth restriction: clinical relevance and future therapeutics

Abstract

Fetal growth restriction (FGR) affects about 5–10% pregnancies and is associated with poorer outcomes in the perinatal period. Additionally, long standing epidemiological data support its association with chronic diseases such as hypertension and diabetes. Cardiac and vascular adaptations in response to chronic hypoxemia due to utero-placental insufficiency are hallmarks of fetal adaptations. Investigators have attempted to identify these changes in the placenta at the microscopic and molecular level. The ex vivo dual perfusion model of the placenta enables the study of placental haemodynamics in growth-restricted pregnancies. Persistent arterial abnormalities (thickness and stiffness) noted on vascular ultrasound during fetal life through to the young-adult age group for those affected by FGR, seem to be a plausible link between in utero events and chronic circulatory diseases. Using these, this review reflects current thought on vascular maladaptive changes in the FGR cohorts and the role in investigating current and future therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosenberg A. The IUGR newborn. Semin Perinatol. 2008;32:219–24.

    Article  Google Scholar 

  2. Figueras F, Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36:86–98.

    Article  Google Scholar 

  3. Lees C, Marlow N, Arabin B, Bilardo CM, Brezinka C, Derks JB, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42:400–8.

    Article  CAS  Google Scholar 

  4. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;350:953–5.

    Article  CAS  Google Scholar 

  5. Cheung YF, Taylor MJ, Fisk NM, Tsoi NS. Fetal origins of reduced arterial distensibility in the donor twin in twin-twin transfusion syndrome. Lancet. 2000;355:1157–8.

    Article  CAS  Google Scholar 

  6. Dobrin PB. Mechanical properties of arteries. Physiol Rev. 1978;58:397–460.

    Article  CAS  Google Scholar 

  7. Lurbe E, Torro MI, Carvajal E, Alvarez V, Redón J. Birth weight impacts on wave reflections in children and adolescents. Hypertension. 2003;41:646–50.

    Article  CAS  Google Scholar 

  8. Sehgal A, Allison B, Gwini S, Menahem S, Miller S, Polglase G. Vascular aging and cardiac maladaptation in growth-restricted preterm infants. J Perinatol. 2018;38:92–97.

    Article  CAS  Google Scholar 

  9. Sehgal A, Skilton MR, Crispi F. Human fetal growth restriction: a cardiovascular journey through to adolescence. J Dev Orig Health Dis. 2016;6:626–35.

    Article  Google Scholar 

  10. Demicheva E, Crispi F. Long-term follow-up of intrauterine growth restriction: cardiovascular disorders. Fetal Diagn Ther. 2014;36:143–53.

    Article  Google Scholar 

  11. Bradley TJ, Potts JE, Lee SK, Potts MT, De Souza AM, Sandor GG. Early changes in the biophysical properties of the aorta in pre-adolescent children born small for gestational age. J Pediatr. 2010;156:388–92.

    Article  Google Scholar 

  12. Crispi F, Figueras F, Cruz-Lemini M, Bartrons J, Bijnens B, Gratacos E, et al. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol. 2012;207:121.e1–.e9.

    Article  Google Scholar 

  13. Miles KA, McDonnell BJ, Maki-Petaja KM, Cockcroft JR, Wilkinson IB, McEniery CM, et al. The impact of birth weight on blood pressure and arterial stiffness in later life: the Enigma Study. J Hypertens. 2011;29:2324–31.

    Article  CAS  Google Scholar 

  14. Gennser G, Rymark P, Isberg PE. Low birth weight and risk of high blood pressure in adulthood. Br Med J. 1988;296:1498–9.

    Article  CAS  Google Scholar 

  15. Barker DJP, Osmond C, Golding J, Kuh D, Wadsworth MEJ. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br Med J. 1989;298:564–7.

    Article  CAS  Google Scholar 

  16. Chaddha V, Viero S, Huppertz B, Kingdom J. Developmental biology of the placenta and the origins of placental insufficiency. Semin Fetal Neonatal Med. 2004;9:357–69.

    Article  Google Scholar 

  17. Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CA, D’Souza SW, et al. Placental phenotypes of intrauterine growth. Pediatr Res. 2005;58:827–32.

    Article  Google Scholar 

  18. Kiserud T, Kessler J, Ebbing C, Rasmussen S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol. 2006;28:143–9.

    Article  CAS  Google Scholar 

  19. Sala C, Campise M, Ambroso G, Motta T, Zanchetti A, Morganti A. Atrial natriuretic peptide and hemodynamic changes during normal human pregnancy. Hypertension. 1995;25:631–6.

    Article  CAS  Google Scholar 

  20. Baschat AA. Pathophysiology of fetal growth restriction: implications for diagnosis and surveillance. Obstet Gynecol Surv. 2004;59:617–27.

    Article  Google Scholar 

  21. Barker DJP. The fetal origins of adult hypertension. J Hypertens. 1992;10:S39–S44.

    Article  CAS  Google Scholar 

  22. Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62:347–504.

    Article  CAS  Google Scholar 

  23. Sehgal A, Crispi F, Skilton M, De Boode W. Clinician performed ultrasound in fetal growth restriction: Fetal, neonatal, pediatric aspects. J Perinatol. 2017;37:1251–58.

    Article  CAS  Google Scholar 

  24. Kingdom JCP, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 1997;18:613–21.

    Article  CAS  Google Scholar 

  25. Mayhewa TM, Charnock-Jonesb DS, Kaufmannc P. Aspects of human fetoplacental vasculogenesis and angiogenesis: changes in complicated pregnancies. Placenta. 2004;25:127–39.

    Article  Google Scholar 

  26. Khong TY, Mooney EE, Ariel I, Balmus NC, Boyd TK, Brundler MA, et al. Sampling and definitions of placental lesions amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140:698–713.

    Article  Google Scholar 

  27. Salafia CM, Vintzileos AM, Silberman L, Bantham KF, Vogel CA. Placental pathology of idiopathic intrauterine growth retardation at term. Am J Perinatol. 1992;9:179–84.

    Article  CAS  Google Scholar 

  28. Vedmedovska N, Rezeberga D, Teibe U, Melderis I, Donders GG. Placental pathology in fetal growth restriction. Eur J Obstet Gynecol Reprod Biol. 2011;155:36–40.

    Article  Google Scholar 

  29. Mifsud W, Sebire NJF. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014;36:117–28.

    Article  Google Scholar 

  30. Fox H, Sebire NJ. The placenta in abnormalities and disorders of the fetus. In: Fox H, Sebire NJ, editors. Pathology of the placenta: major problems in pathology. Vol. 7, 3 edn. Philadelphia: Saunders; 1991.

  31. Sun CCJ, Revell VO, Belli AJ, Viscardi RM. Discrepancy in pathologic diagnosis of placental lesions. Arch Pathol Lab Med. 2002;126:706–9.

    PubMed  Google Scholar 

  32. Sehgal A, Dahlstrom JE, Chan Y, Allison BJ, Miller SL, Polglase GR. Placental histopathology in preterm fetal growth restriction. J Paediatr Child Health. 2018. https://doi.org/10.1111/jpc.14251. [Epub ahead of print].

  33. Salafia CM, Charles AK, Maas EM. Placenta and fetal growth restriction. Clin Obstet Gynecol. 2006;49:236–56.

    Article  Google Scholar 

  34. Teasdale F. Idiopathic intrauterine growth retardation: histomorphometry of the human placenta. Placenta. 1984;5:83–92.

    Article  CAS  Google Scholar 

  35. Kingdom J, Huppertz B, Seaward G, Kaufmann P. Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol. 2000;92:35–43.

    Article  CAS  Google Scholar 

  36. Junaid TO, Brownbill P, Chalmers N, Johnstone ED, Aplin JD. Fetoplacental vascular alterations associated with fetal growth restriction. Placenta. 2014;35:808–15.

    Article  CAS  Google Scholar 

  37. Cotechini T, Hopman WJ, Graham CH. Inflammation-induced fetal growth restriction in rats is associated with altered placental morphometrics. Placenta. 2014;35:575–81.

    Article  CAS  Google Scholar 

  38. Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71:444–57.

    Article  Google Scholar 

  39. Saji F, Samejima Y, Kamiura S, Sawai K, Shimoya K, Kimura T. Cytokine production in chorioamnionitis. J Reprod Immunol. 2000;47:185–96.

    Article  CAS  Google Scholar 

  40. Lappas M, McCracken S, McKelvey K, Lim R, James J, Roberts CT, et al. Formyl peptide receptor-2 is decreased in foetal growth restriction and contributes to placental dysfunction. Mol Hum Reprod. 2018;24:94–109.

    Article  Google Scholar 

  41. Harris LK. Could peptide-decorated nanoparticles provide an improved approach for treating pregnancy complications? Nanomedicine. 2016;11:2235–8.

    Article  CAS  Google Scholar 

  42. King A, Ndifon C, Lui S, Widdows K, Kotamraju VR, Agemy L, et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci Adv. 2016;2:e1600349.

    Article  Google Scholar 

  43. Acharya G, Wilsgaard T, Berntsen GK, Maltau JM, Kiserud T. Doppler-derived umbilical artery absolute velocities and their relationship to fetoplacental volume blood flow: a longitudinal study. Ultrasound Obstet Gynecol. 2005;25:444–53.

    Article  CAS  Google Scholar 

  44. Ghosh GS, Fu J, Olofsson P, Gudmundsson S. Pulsations in the umbilical vein during labor are associated with increased risk of operative delivery for fetal distress. Ultrasound Obstet Gynecol. 2009;34:177–81.

    Article  CAS  Google Scholar 

  45. Turan S, Miller J, Baschat AA. Integrated testing and management in fetal growth restriction. Semin Perinatol. 2008;32:194–200.

    Article  Google Scholar 

  46. Jones S, Bischof H, Lang I, Desoye G, Greenwood SL, Johnstone ED, et al. Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction. J Physiol. 2015;593:3077–92.

    Article  CAS  Google Scholar 

  47. Kummu M, Sieppi E, Koponen J, Laatio L, Vähäkangas K, Kiviranta H, et al. Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system. Placenta. 2015;36:1185–91.

    Article  CAS  Google Scholar 

  48. Abumaree MH, Brownbill P, Burton G, Castillo C, Chamley L, Croy BA, et al. IFPA Meeting 2013 Workshop Report III: Maternal placental immunological interactions, novel determinants of trophoblast cell fate, dual ex vivo perfusion of the human placenta. Placenta. 2014;35:S15–19.

  49. Brownbill P, Sebire N, McGillick EV, Ellery S, Murthi P. Ex vivo dual perfusion of the human placenta: disease simulation, therapeutic pharmacokinetics and analysis of off-target effects. Methods Mol Biol. 2018;1710:173–89.

    Article  CAS  Google Scholar 

  50. Marzioni D, Tamagnone L, Capparuccia L, Marchini C, Amici A, Todros T, et al. Restricted innervation of uterus and placenta during pregnancy: evidence for a role of the repelling signal Semaphorin 3A. Dev Dyn. 2004;231:839–48.

    Article  CAS  Google Scholar 

  51. Poston L. The control of blood flow to the placenta. Exp Physiol. 1997;82:377–87.

    Article  CAS  Google Scholar 

  52. Bainbridge SA, Farley AE, McLaughlin BE, Graham CH, Marks GS, Nakatsu K, et al. Carbon monoxide decreases perfusion pressure in isolated human placenta. Placenta. 2002;23:563–9.

    Article  CAS  Google Scholar 

  53. Cindrova-Davies T, Herrera EA, Niu Y, Kingdom J, Giussani DA, Burton GJ. Reduced cystathionine gamma-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: hydrogen sulfide as a placental vasodilator. Am J Pathol. 2013;182:1448–58.

    Article  CAS  Google Scholar 

  54. Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson SL. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60:231–8.

    Article  CAS  Google Scholar 

  55. Magness RR, Shaw CE, Phernetton TM, Zheng J, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. II. Pregnancy effects on NO synthase expression. Am J Physiol Heart Circ Physiol. 1997;272:H1730–H1740.

    Article  CAS  Google Scholar 

  56. Wang X, Athayde N, Trudinger B. Maternal plasma from pregnant women with umbilical placental vascular disease does not affect endothelial cell mRNA expression of nitric oxide synthase. J Soc Gynecol Investig. 2004;11:149–53.

    Article  CAS  Google Scholar 

  57. Kingdom JC, McQueen J, Connell JM, Whittle MJ. Fetal angiotensin II levels and vascular (type I) angiotensin receptors in pregnancies complicated by intrauterine growth retardation. Br J Obstet Gynaecol. 1993;100:476–82.

    Article  CAS  Google Scholar 

  58. Brownbill P, Sibley CP. Regulation of transplacental water transfer: the role of fetoplacental venous tone. Placenta. 2006;27:560–7.

    Article  CAS  Google Scholar 

  59. Rodríguez-López M, Cruz-Lemini M, Valenzuela-Alcaraz B, Garcia-Otero L, Sitges M, Bijnens B, et al. Descriptive analysis of the different phenotypes of cardiac remodelling in fetal growth restriction. Ultrasound Obstet Gynecol. 2017;50:207–14.

    Article  Google Scholar 

  60. Veronese E, Tarroni G, Visentin S, Cosmi E, Linguraru MG, Grisan E. Estimation of prenatal aorta intima-media thickness from ultrasound examination. Phys Med Biol. 2014;59:6355–71.

    Article  CAS  Google Scholar 

  61. Berry CL, Looker T. An alteration in the chemical structure of the aortic wall induced by a finite period of growth inhibition. J Anat. 1973;114:83–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Clarenbach CF, Thurnheer R, Kohler M. Vascular dysfunction in chronic obstructive pulmonary disease: current evidence and perspectives. Expert Rev Respir Med. 2012;6:37–43.

    Article  CAS  Google Scholar 

  63. Polglase GR, Allison BJ, Coia E, Li A, Jenkin G, Malhotra A, et al. Altered cardiovascular function at birth in growth-restricted preterm lambs. Pediatr Res. 2016;80:538–46.

    Article  Google Scholar 

  64. Mahomed FA. Remarks on arterio-capillary fibrosis and its clinical recognition. Lancet. 1877;110:232–4.

    Article  Google Scholar 

  65. Akira M, Yoshiyuki S. Placental circulation, fetal growth and stiffness of the abdominal aorta in newborn infants. J Pediatr. 2006;148:49–53.

    Article  Google Scholar 

  66. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39:10–15.

    Article  CAS  Google Scholar 

  67. Takenaka T, Mimura T, Kanno Y, Suzuki H. Quantification of arterial stiffness as a risk factor to the progression of chronic kidney diseases. Am J Nephrol. 2005;25:417–24.

    Article  Google Scholar 

  68. Zanardo V, Visentin S, Bertin M, Zaninotto M, Trevisanuto D, Cavallin F, et al. Aortic wall thickness and amniotic fluid albuminuria in growth-restricted twin fetuses. Twin Res Hum Genet. 2013;16:720–6.

    Article  Google Scholar 

  69. Zanardo V, Fanelli T, Weiner G, Fanos V, Zaninotto M, Visentin S. Intrauterine growth restriction is associated with persistent aortic wall thickening and glomerular proteinuria during infancy. Kidney Int. 2011;80:119–23.

    Article  Google Scholar 

  70. Sehgal A, Gwini SM, Menahem S, Allison BJ, Miller SL, Polglase GR. Preterm growth restriction and bronchopulmonary dysplasia: the vascular hypothesis and related physiology. J Physiol. 2018. https://doi.org/10.1113/JP276040.

  71. Costa EJ, Lopes RH, Lamy-Freund MT. Permeability of pure lipid bilayers to melatonin. J Pineal Res. 1995;19:123–6.

    Article  CAS  Google Scholar 

  72. Hung MW, Yeung HM, Lau CF, Poon AMS, Tipoe GL, Fung ML. Melatonin attenuates pulmonary hypertension in chronically hypoxic rats. Int J Mol Sci. 2017;18:1125–35.

    Article  Google Scholar 

  73. Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175:978–85.

    Article  CAS  Google Scholar 

  74. Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112:2477–86.

    Article  CAS  Google Scholar 

  75. McGillick EV, Orgeig S, Morrison JL. Structural and molecular regulation of lung maturation by intratracheal VEGF administration in the normally grown and placentally restricted fetus. J Physiol. 2015;594:1399–420.

    Article  Google Scholar 

  76. Rodriguez-Lopez M, Osorio L, Acosta-Rojas R, Figueras J, Cruz-Lemini M, Figueras F, et al. Influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction. Pediatr Res. 2016;79:100–6.

    Article  CAS  Google Scholar 

  77. Skilton MR, Ayer JG, Harmer JA, Webb K, Leeder SR, Marks GB, et al. Impaired fetal growth and arterial wall thickening. A randomized trial of omega-3 supplementation. Pediatrics. 2012;129:e698.

    Article  Google Scholar 

  78. Dilworth MR, Andersson I, Renshall LJ, Cowley E, Baker P, Greenwood S, et al. Sildenafil increased fetal weight in a mouse model of FGR with a normal vascular phenotype. PLoS ONE. 2013;30:e77748. 8

    Article  Google Scholar 

  79. Paauw ND, Terstappen F, Ganzevoort W, Joles JA, Gremmels H, Lely AT. Sildenafil during pregnancy: a preclinical meta-analysis on fetal growth and maternal blood pressure. Hypertension. 2017;70:998–1006.

    Article  CAS  Google Scholar 

  80. Sharp A, Cornforth C, Jackson R, Harrold J, Turner MA, Kenny LC, et al. Maternal sildenafil for severe fetal growth restriction (STRIDER): a multicentre, randomised, placebo-controlled, double-blind trial. Lancet Child Adolesc Health. 2017;1016:S2352–4642.

    Google Scholar 

  81. Groom K, et al. 5PDE Inhibitors for Fetal Growth Restriction, the STRIDER Consortium and STRIDER NZAus. Perinatal Society of Australia and New Zealand Annual Meeting 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Sehgal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, A., Murthi, P. & Dahlstrom, J.E. Vascular changes in fetal growth restriction: clinical relevance and future therapeutics. J Perinatol 39, 366–374 (2019). https://doi.org/10.1038/s41372-018-0287-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0287-4

This article is cited by

Search

Quick links