Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anemia of prematurity and cerebral near-infrared spectroscopy: should transfusion thresholds in preterm infants be revised?

Abstract

Objective

To determine the impact of progressive anemia of prematurity on cerebral regional saturation (C-rSO2) in preterm infants and identify the hemoglobin threshold below which a critical decrease (>2SD below the mean) in C-rSO2 occurs.

Study design

In a cohort of infants born ≤30 weeks EGA, weekly C-rSO2 data were prospectively collected from the second week of life through 36 weeks post-menstrual age (PMA). Clinically obtained hemoglobin values were noted at the time of recording. Recordings were excluded if they were of insufficient duration (<1 h) or if the hemoglobin was not measured within 7 days. Statistical analysis was performed using a linear mixed effects-model and ROC analysis. ROC analysis was used to determine the threshold of anemia, where C-rSO2 critically decreased >2SD below the mean normative value (<55%) in preterm infants.

Results

In total 253 recordings from 68 infants (mean EGA 26.9 ± 2.1 weeks, BW 1025 ± 287 g, 49% male) were included. Approximately 29 out of 68 infants (43%) were transfused during hospitalization. Mixed-model statistical analysis adjusting for EGA, BW, and PMA revealed a significant association between decreasing hemoglobin and C-rSO2 (p < 0.01) in transfusion-naive infants but not in transfused infants. In the transfusion naive group, using ROC analysis demonstrated a threshold hemoglobin of 9.5 g/dL (AUC 0.81, p < 0.01) for critical cerebral desaturation in preterm infants.

Conclusions

In transfusion-naive preterm infants, worsening anemia was associated with a progressive decrease in cerebral saturations. Analysis identified a threshold hemoglobin of 9.5 g/dL below which C-rSO2 dropped >2SD below the mean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Database Syst Rev. 2011;9:CD000512. https://doi.org/10.1002/14651858.CD000512.pub2.

  2. Colombatti R, Sainati L, Trevisanuto D. Anemia and transfusion in the neonate. Semin Fetal Neonatal Med. 2016;21:2–9.

    Article  PubMed  Google Scholar 

  3. Ibrahim M, Ho SKY, Yeo CL. Restrictive versus liberal red blood cell transfusion thresholds in very low birth weight infants: a systematic review and meta-analysis. J Paediatr Child Health. 2014;50:122–30.

    Article  PubMed  Google Scholar 

  4. Christensen RD, Carroll PD, Josephson CD. Evidence-based advances in transfusion practice in neonatal intensive care units. Neonatology. 2014;106:245–53.

    Article  PubMed  Google Scholar 

  5. Juul S. Erythropoiesis and the approach to anemia in premature infants. J Matern-Fetal Neonatal Med. 2012;25:97–99.

    CAS  PubMed  Google Scholar 

  6. Aher S, Malwatkar K, Kadam S. Neonatal anemia. Semin Fetal Neonatal Med. 2008;13:239–47.

    Article  PubMed  Google Scholar 

  7. Fabres J, Wehrli G, Marques Marisa B, Phillips V, Dimmitt Reed A, Westfall Andrew O, et al. Estimating blood needs for very-low-birth-weight infants. Transfusion. 2006;46:1915–20.

    Article  PubMed  Google Scholar 

  8. Kirpalani H, Whyte RK, Andersen C, Asztalos EV, Heddle N, Blajchman MA, et al. The premature infants in need of transfusion (pint) study: a randomized, controlled trial of a restrictive (LOW) versus liberal (HIGH) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149:301–7.e303.

    Article  PubMed  Google Scholar 

  9. Bell EF, Strauss RG, Widness JA, Mahoney LT, Mock DM, Seward VJ, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics. 2005;115:1685–91.

    Article  PubMed  Google Scholar 

  10. Bifano EM. The effect of hematocrit (HCT) level on clinical outcomes in extremely low birthweight (ELBW) infants. Pediatr Res. 2001;49:311A.

    Google Scholar 

  11. Bifano EM, Bode MM, D’Eugenio DB. Prospective randomized trial of high vs. low hematocrit in extremely low birthweight (ELBW) infants: One year growth and neurodevelopmental outcome. Pediatr Res. 2002;51:325a.

    Google Scholar 

  12. Bishara N, Ohls RK. Current controversies in the management of the anemia of prematurity. Semin Perinatol. 2009;33:29–34.

    Article  PubMed  Google Scholar 

  13. Chen H-L, Tseng H-I, Lu C-C, Yang S-N, Fan H-C, Yang R-C. Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol. 2009;50:110–6.

    Article  PubMed  Google Scholar 

  14. Whyte RK, Kirpalani H, Asztalos EV, Andersen C, Blajchman M, Heddle N, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics. 2009;123:207–13.

    Article  PubMed  Google Scholar 

  15. Nopoulos PC, Conrad AL, Bell EF, Strauss RG, Widness JA, Magnotta VA, et al. Long-term outcome of brain structure in premature infants: effects of liberal vs restricted red blood cell transfusions. Arch Pediatr Adolesc Med. 2011;165:443–50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Josephson CD, Glynn SA, Kleinman SH, Blajchman MA. A multidisciplinary “think tank”: the top 10 clinical trial opportunities in transfusion medicine from the National Heart, Lung, and Blood Institute-sponsored 2009 state-of-the-science symposium. Transfusion. 2011;51:828–41.

    Article  PubMed  Google Scholar 

  17. Fredrickson LK, Bell EF, Cress GA, Johnson KJ, Zimmerman MB, Mahoney LT, et al. Acute physiological effects of packed red blood cell transfusion in preterm infants with different degrees of anaemia. Arch Dis Child Fetal Neonatal Ed. 2011;96:F249–53.

    Article  PubMed  Google Scholar 

  18. Hudson I, Cooke A, Holland B, Houston A, Jones JG, Turner T, et al. Red cell volume and cardiac output in anaemic preterm infants. Arch Dis Child. 1990;65:672–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bailey SM, Hendricks-Munoz KD, Wells JT, Mally P. Packed red blood cell transfusion increases regional cerebral and splanchnic tissue oxygen saturation in anemic symptomatic preterm infants. Am J Perinatol. 2010;27:445–53.

    Article  PubMed  Google Scholar 

  20. El-Dib M, Aly S, Govindan R, Mohamed M, du Plessis A, Aly H. Brain maturity and variation of oxygen extraction in premature infants. Am J Perinatol. 2016;33:814–20.

    Article  PubMed  Google Scholar 

  21. Wardle SP, Yoxall CW, Weindling AM. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb blood Flow Metab. 2000;20:272–9.

    Article  CAS  PubMed  Google Scholar 

  22. Andersen CC, Collins CL. Poor circulation, early brain injury, and the potential role of red cell transfusion in premature newborns. Pediatrics. 2006;117:1464–6.

    Article  PubMed  Google Scholar 

  23. Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007;38:724–30.

    Article  PubMed  Google Scholar 

  24. Glass HC, Costarino AT, Stayer SA, Brett C, Cladis F, Davis PJ. Outcomes for extremely premature infants. Anesth Analg. 2015;120:1337–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Litt J, Taylor HG, Klein N, Hack M. Learning disabilities in children with very low birthweight: prevalence, neuropsychological correlates, and educational interventions. J Learn Disabil. 2005;38:130–41.

    Article  PubMed  Google Scholar 

  26. Taylor HG, Minich NM, Klein N, Hack M. Longitudinal outcomes of very low birth weight: neuropsychological findings. J Int Neuropsychol Soc: JINS. 2004;10:149–63.

    Article  PubMed  Google Scholar 

  27. Back SA. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev. 2006;12:129–40.

    Article  PubMed  Google Scholar 

  28. Ment LR, Schwartz M, Makuch RW, Stewart WB. Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Dev Brain Res. 1998;111:197–203.

    Article  CAS  Google Scholar 

  29. Raman L, Georgieff MK, Rao R. The role of chronic hypoxia in the development of neurocognitive abnormalities in preterm infants with bronchopulmonary dysplasia. Dev Sci. 2006;9:359–67.

    Article  PubMed  Google Scholar 

  30. Raman L, Tkac I, Ennis K, Georgieff MK, Gruetter R, Rao R. In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Dev Brain Res. 2005;156:202–9.

    Article  CAS  Google Scholar 

  31. Tao JD, Barnette AR, Griffith JL, Neil JJ, Inder TE. Histopathologic correlation with diffusion tensor imaging after chronic hypoxia in the immature ferret. Pediatr Res. 2012;71:192–8.

    Article  CAS  PubMed  Google Scholar 

  32. Dix LML, van Bel F, Lemmers PMA. Monitoring cerebral oxygenation in neonates: an update. Front Pediatr. 2017;5:46.

    PubMed  PubMed Central  Google Scholar 

  33. van Bel F, Lemmers P, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology. 2008;94:237–44.

    Article  PubMed  Google Scholar 

  34. Andersen CC, Hodyl NA, Kirpalani HM, Stark MJ. A theoretical and practical approach to defining “Adequate Oxygenation” in the preterm newborn. Pediatrics. 2017;139;pii: e20161117. https://doi.org/10.1542/peds.2016-1117.

    Article  PubMed  Google Scholar 

  35. Mintzer JP, Parvez B, Chelala M, Alpan G, LaGamma EF. Monitoring regional tissue oxygen extraction in neonates < 1250 g helps identify transfusion thresholds independent of hematocrit. J Neonatal–Perinat Med. 2014;7:89–100.

    CAS  Google Scholar 

  36. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79:55–64.

    Article  CAS  PubMed  Google Scholar 

  37. Parry G, Tucker J, Tarnow-Mordi W. CRIB II: an update of the clinical risk index for babies score. Lancet. 2003;361:1789–91.

    Article  PubMed  Google Scholar 

  38. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.

    Article  CAS  PubMed  Google Scholar 

  39. Omar RZ, Wright EM, Turner RM, Thompson SG. Analysing repeated measurements data: a practical comparison of methods. Stat Med. 1999;18:1587–603.

    Article  CAS  PubMed  Google Scholar 

  40. Vrieze SI. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods. 2012;17:228–43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–577.

    CAS  PubMed  Google Scholar 

  42. Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology. 2005;16:73–81.

    Article  PubMed  Google Scholar 

  43. Pichler G, Binder C, Avian A, Beckenbach E, Schmölzer GM, Urlesberger B. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr. 2013;163:1558–63.

    Article  PubMed  Google Scholar 

  44. McNeill S, Gatenby JC, McElroy S, Engelhardt B. Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants. J Perinatol. 2011;31:51–57.

    Article  CAS  PubMed  Google Scholar 

  45. van Hoften JC, Verhagen EA, Keating P, ter Horst HJ, Bos AF. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child Fetal Neonatal Ed. 2010;95:F352–358.

    Article  PubMed  Google Scholar 

  46. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20:164–72.

    Article  PubMed  Google Scholar 

  47. Vesoulis ZA, Lust CE, Liao SM, Trivedi SB, Mathur AM. Early hyperoxia burden detected by cerebral near-infrared spectroscopy is superior to pulse oximetry for prediction of severe retinopathy of prematurity. J Perinatol. 2016;36:966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Balegar KK, Stark MJ, Briggs N, Andersen CC. Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants. J Pediatr. 2014;164:475–80.e471.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We like to thank our study coordinator, Anthony Barton, and our research assistant, Laura Atwood, for their tireless efforts. We also thank all the patients and families who participated in this study.

Funding

This work was supported by the following grants: Washington University Institute of Clinical and Translational Sciences KL2 Training Program (NIH/NCATS KL2 TR000450); The Gerber Foundation; The Barnes-Jewish Hospital Foundation and the Washington University Institute of Clinical and Translational Sciences Clinical and Translational Funding Program (NIH/NCATS UL1 TR000448); NIH award R01HL124078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit M. Mathur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitehead, H.V., Vesoulis, Z.A., Maheshwari, A. et al. Anemia of prematurity and cerebral near-infrared spectroscopy: should transfusion thresholds in preterm infants be revised?. J Perinatol 38, 1022–1029 (2018). https://doi.org/10.1038/s41372-018-0120-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0120-0

This article is cited by

Search

Quick links