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Abstract
Objective: To evaluate if mid-pregnancy immune and growth-related molecular factors predict preterm birth (PTB) with and
without (±) preeclampsia.
Study design: Included were 400 women with singleton deliveries in California in 2009–2010 (200 PTB and 200 term)
divided into training and testing samples at a 2:1 ratio. Sixty-three markers were tested in 15–20 serum samples using
multiplex technology. Linear discriminate analysis was used to create a discriminate function. Model performance was
assessed using area under the receiver operating characteristic curve (AUC).
Results: Twenty-five serum biomarkers along with maternal age <34 years and poverty status identified >80% of women
with PTB ± preeclampsia with best performance in women with preterm preeclampsia (AUC= 0.889, 95% confidence
interval (0.822–0.959) training; 0.883 (0.804–0.963) testing).
Conclusion: Together with maternal age and poverty status, mid-pregnancy immune and growth factors reliably identified
most women who went on to have a PTB ± preeclampsia.

Introduction

Worldwide, more than 15 million babies are born preterm
(before 37 completed weeks of gestation) each year [1].
Preterm birth (PTB) and its related complications are the
leading cause of death in children less than five years of age
and contribute to more than one million deaths per year [2].
Survivors of PTB are more likely to suffer from both short-
and long-term morbidities including blindness, deafness,
neurodevelopmental delay, psychiatric disturbance, dia-
betes, and heart disease in later life [3–6]. While all neo-
nates born preterm are at risk for short and long-term
morbidity and mortality, those with early PTB (gestational
age (GA), <32 weeks) are at the highest risk [3–8].

Despite increased clinical, research, and policy focus,
rates of PTB are increasing worldwide—including in the
United States [1]. After several years of decline, in 2015,
the rate of PTB in the United States increased [9]. This
pattern of increase continued into 2016 [10].

The continuing burden of PTB despite increased focus
suggests the need for a different approach to addressing
PTB from a research, clinical, and policy perspective. While
historically, prevention efforts have focused mostly on
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women with a previous PTB or short cervix, or have
focused on extending gestational duration in women with
early signs of labor [11–13], there is a growing push for
management based on a woman’s specific personal risk
profile. In 2016, the Society for Maternal Fetal Medicine
(SMFM) released its first PTB Toolkit [14] which outlines
recommended management of women based on a number of
risk factors for PTB (e.g., bacteriuria, smoking, obesity,
pregestational diabetes, and chronic hypertension).

Consideration of a clinical shift to address the risk of PTB
has also recently begun to be considered for women testing
as “high-risk” based on mid-pregnancy biomarkers [15–17].
In general, the principle behind such tests is that they might
allow for the identification of at-risk pregnant women that
may otherwise go unidentified. While the question of whe-
ther women with molecular risk without other traditional
risks (e.g., previous PTB, short cervix) might benefit from
existing therapies (e.g., progesterone, cervical pessary, cer-
vical cerclage, tocolytic administration, and antibiotic ther-
apy) is still unknown, all of these interventions require
timely administration [18]. These efforts are closely aligned
with those focused on early identification of pregnancies at
increased risk for preeclampsia (ending in preterm and term
birth) given the established efficacy of aspirin administration
≤16-weeks for reducing recurrence [19, 20].

Recent years have seen progress in the development of PTB
prediction tests with three tests in or moving into the market.
Two existing tests measure proteins and microparticles identi-
fied by multiple reaction monitoring mass spectrometry [15,
16] and one uses circulating cell-free plasma RNAs tested by
Q-PCR [17] to identify women at increased risk for sponta-
neous PTB. Currently these tests focus mostly on spontaneous
PTB (PTB related to preterm premature rupture of membranes
(PPROM) or premature labor) and generally do not address
provider initiated PTB (PTB resulting from cesarean section or
induction due to fetal or maternal indication). Efforts focused
on molecular and other prediction testing for preeeclampsia are
also well underway but also rarely address overlap with efforts
aimed at predicting PTB [21, 22].

While existing prediction tests for spontaneous PTB (and
for preeclampsia without a focus on PTB) demonstrate the
promise of using mid-pregnancy biomarkers for prediction
purposes, these tests lack a generalizability to all PTBs.
Given the breadth of data demonstrating common patho-
physiological underpinning across spontaneous and provi-
der initiated subtypes of PTB including among those ±
preeclampsia [23–28], it appears possible that a predictive
test could be developed that covers a wider range of PTB
phenotoypes. For example, all PTB subtypes ± pre-
eclampsia have been shown to have strong links to markers
of immune function (e.g., cytokines and chemokines)
[23–26] and to angiogenic growth factors (e.g., vascular
endothelial growth factor (VEGF)) [27, 28].

For this study, we hypothesized that a comprehensive test
for PTB across subtypes including ± preeclampsia could be
developed using mid-pregnancy growth and immune-related
factors along with maternal demographics and obstetric
factors. Markers were tested in 15–20 week serum samples
collected as part of routine prenatal screening with predictive
performance assessed in training and testing subsets.

Materials and methods

All women included in the study are part of a population-
based cohort of all singleton California births from July
2009 through December 2010 (n= 757,853). All women
had gestational dating by first trimester ultrasound and had a
second trimester serum marker test done as part of routine
prenatal screening for aneuploidies and neural tube defects
by the California Genetic Disease Screening Program (n=
241,000). Candidate cases and controls all had a second
trimester serum sample banked by the California Biobank
Program (n= 77,604) [29] and had detailed demographic
and obstetric information available in a linked hospital
discharge birth cohort database maintained by the California
Office of Statewide Health Planning and Development
(OSHPD) (n= 61,339). A number of previous papers have
been published that leverage data and screening results for
women in this and other California cohorts [30, 31]. The
final source set for this study included 4025 singletons with
births before 37 weeks, and 56,081 with births on or after
37 completed weeks through 44 weeks. From this set, we
selected 100 PTB cases with gestational ages at birth
<32 weeks, 100 PTB cases with gestational ages at birth
from 32 to 36 weeks, and 200 term controls with gestational
ages at birth from 39 to 42 weeks using simple random
sampling wherein each within group pregnancy had an
equal probability of selection. The resulting sample (by
<32, 32–26, and 39 to 42 weeks) were then divided into
training and testing subsets at a ratio of 2:1 (Supplemental
Fig. 1). This was a convenient random sample wherein total
number was determined based on the financial resources
available for testing.

Maternal demographic and obstetric characteristics

Demographic and obstetric factors evaluated included race/
ethnicity, maternal age, years of formal education, place of
maternal birth, low-income status (as indicated by “Medi-
Cal” payment for delivery (the California health program
for low-income persons (generally defined as income
<138% of the United States poverty level)), parity, pre-
existing diabetes, preexisting hypertension, reported smok-
ing, obesity (body mass index (BMI) ≥30 m/kg2),
interpregnancy interval (IPI) <12 months, and previous
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PTB. All variables were derived from the OSHPD birth
cohort file, which combines birth certificate records and all
hospital discharge records for the mother and baby from 1
year prior to the birth to 1 year after the birth. Coding of
preexisting and gestational diabetes and hypertension was
based on International Classification of Diseases, 9th
Revision, Clinical Modification (ICD-9-CM) [32] four digit
codes contained in the cohort file.

Serum biomarker testing

Immune and growth-factor molecular testing was done
using residual serum samples from second trimester
(15–20 week) prenatal screening. Specimens were stored in
1 milliliter tubes at −80 °C. Markers tested included twenty
interleukins, three interferons, eleven chemokine ligands,
eight members of the tumor necrosis factor-alpha (TNFA)
super family cytokines, 12 growth factors, three colony-
stimulating factors, two soluble adhesion molecules, and
leptin, plasminogen activator inhibitor-1 (PAI-1), resistin,
and receptor for advanced glycosylation end products
(RAGE) (see Fig. 1 for complete listing). While many of
these markers have been shown to have close links to PTB
or preeclampsia [24, 33–36], for this study we elected to run
the full panel of immune and growth-factor related markers
available via multiplex testing through our partner labora-
tory (the Human Immune Monitoring Center (HIMC) at
Stanford University) [37] given the established inter-
connectedness of all of these markers to immune function
and as such, the potential for revealing novel patterns and
relationships—particularly given the role of immune func-
tion in pregnancy [38].

All markers were read using a Luminex 200 instrument
(Austin, TX) in accordance with the manufacturer recom-
mendations. Details regarding Luminex lab protocols at the
HIMC are available on their website [37]. All markers were
tested using a human multiplex kit that was purchased from
Affymetrix Inc. (Santa Clara, CA) with the exception of
human soluble receptors, which were measured using a Mil-
lipore high sensitivity multiplex kit (HSCRMAG32KPX14)
(Billerica, MA). Median fluorescence intensity (MFI) values
were reported for all markers using Masterplex software
(Hitashi Solutions, San Bruno, CA). To avoid error inherent
in log transformation of MFI to pg/mL, analyses relied on the
MFI average, which was based on measurement of two ali-
quots tested on the same plate for each case and control. All
inter-assay coefficients (CVs) were <15 % across all markers
and all intra-assay CVs were <10%.

Data analyses

Simple logistic regression (including odds ratios (ORs)
and their 95% (CIs)) were used for association testing in

the training set using demographic, clinical, and mole-
cular factors (standardized using natural log transforma-
tion) and to build multivariate models. So as not to lose
information that might be critical to prediction, for vari-
able selection into multivariate models we utilized back-
ward stepwise regression wherein all possible predictors
were entered into the model and the criteria for remaining
in the model was p < 0.20. Predictors with a p ≥ 0.05 and
<0.20 were removed in any instance where their exclusion
resulted in a <1% decrease in the concordance statistic (c-
statistic) (equivalent to the area under the receiver oper-
ating characteristic curve (AUC)). Similarly, in any
instance where the variable inflation factor (VIF) indi-
cated major multicollinearity among predictors (defined as
VIF ≥2.5) predictors were removed when their exclusion
resulted in a <1% decrease in the c-statistic. All variables
in the final multivariate logistic model were included in
the final linear discriminate analysis (LDA) algorithm
with assessment of performance using AUC in both the
training and testing subsets. AUC performance was
evaluated for all PTBs and for early PTB (<32 weeks) and
late PTB (33–36) subgroups including in spontaneous and
provider initiated subgroups and by preeclampsia diag-
nosis by ICD-9-CM code [32]. “Spontaneous PTBs” were
considered to be those where the birth certificate or hos-
pital discharge record noted ‘‘preterm premature rupture
of membranes’’ (PPROM) or ‘‘preterm labor.’’ Pregnan-
cies with a record of receiving tocolytics with no record of
PPROM were also included in the preterm labor group.
Pregnancies classified as “provider initiated” PTB were
those without PPROM or premature labor for whom there
was ‘‘medical induction’’, ‘‘assisted rupture of mem-
branes’’, or for whom there was a cesarean delivery at
<37 weeks of gestation and none of the aforementioned
indicators of spontaneous PTB. Rates of PTB (overall and
by subtypes and by preeclampsia) were examined by AUC
derived probability scores (by deciles) to assess true- and
false-positive performance at set cut-points in the training
and testing subgroups.

All analyses were done using Statistical Analysis Soft-
ware (SAS) version 9.3 (Cary, NC). Methods and protocols
for the study were approved by the Committee for the
Protection of Human Subjects within the Health and Human
Services Agency of the State of California, the Institutional
Review Board of Stanford University and the Institutional
Review Board of the University of California San
Francisco.

Results

Most case and control women in the study identified
themselves as Hispanic or White (e.g., 55.8% of women
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with a PTB delivery and 42.5% of women with a term
delivery in the training sample were Hispanic and 47.5% of
women with a PTB delivery and 42.5% of women with a
term delivery in the testing sample were Hispanic). Most
women in both the training and testing samples were
between 18 and 34 years of age (67.5–75.0% across
groupings). The majority women with a preterm delivery
had a spontaneous PTB (82.5% in the training sample and

75.0% in the testing sample). The rate of preterm pre-
eclampsia was 15.8% in the training sample and 22.5% in the
testing sample (Table 1). Crude logistic analyses in the
training sample revealed that women with PTB ± pre-
eclampsia were significantly more likely (p < .05) than term
controls to be low-income (as indicated by MediCal status)
(OR 2.07, 95% CI 1.23–3.48) and to have lower MIP1B
levels (OR 0.59, 95% CI 0.38–0.93) (Supplemental Table 1).

Fig. 1 Serum markers measured in banked 15–20-week serum samples
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The final 15 to 20 week PTB ± preeclampsia model
included maternal age greater than 34-years and low-
income status along with 25 serum biomarkers

(Supplemental Table 2). Serum markers included eight
interleukins (IL-1 receptor 2 (IL-1R2), IL-4, IL-4R, IL-5,
IL-13, IL-17, IL-17F, and glycoprotein 130 (GP130)), one
interferon (interferon (IFN) beta (IFNB)), one factor from
the TNFA super family (sFAS ligand (sFASL)), five che-
mokine ligands (epithelial neutrophil-activating protein 78
(ENA-78), eotaxin, monokine induced by gamma-interferon
(MIG), macrophage inflammatory protein 1 beta (MIP1B),
and regulated on activation, normal T-cell expressed and
secreted (RANTES)), five growth factors (stem cell factor
(SCF), platelet-derived growth factor subunit BB (PDGF-
BB), basic fibroblast growth factor (FGF-basic), nerve
growth factor (NGF), and vascular endothelial growth factor
R3 (VEGFR3)), two colony-stimulating factors (granulo-
cyte-colony-stimulating factor (G-CSF), and macrophage
colony-stimulating factor (M-CSF)), as well as PAI1,
resistin, and RAGE. Although we found that many of the
markers in the final model were highly correlated (VIFs
≥2.5 for 21 of the 24 markers in the final model (IL-1R2, IL-
4, IL-5, IL-13, IL-17, IL-17F, GP130, IFNB, sFASL, ENA-
78, eotaxin, MIG, MIP1B, SCF, PDGF-BB, FGF-basic,
NGF, VEGFR3, G-CSF, M-CSF, and PAI1) (Supplemental
Fig. 3), all of these markers contributed 1% or more to the
c-statistic when included in the model and were, therefore,
retained.

When considered in combination using the linear dis-
criminate for PTB ± preeclampsia, the 25 target immune
and growth factors along with maternal age >34 years and
low-income status were able to identify more than 80% of
women going on to deliver preterm in the training set (AUC
0.803, 95% CI 0.748–0.858) and 75.0% of women going on
to deliver preterm in the testing set (AUC 0.750, 95% CI
0.676–0.825) (Table 2, Supplemental Fig. 2). Performance
based on the use of combined maternal characteristics and
serum markers exceed that based on the use of only char-
acteristics or serum markers (AUC for all preterm birth
using maternal age >34 and low-income status= 0.620,
95% CI (0.553–0.687) in the training set and AUC= 0.539
(95% CI 0.455–0.624) in the testing set; AUC for immune
and growth markers only= 0.777 (0.719–0.835) in the
training set and AUC= 0.743 (0.667–0.818) in the testing
set. While performance varied some across PTB subgroups
in the training and testing subsets, most AUCs were at or
above 80%. One exception was in the training sample
where the AUC for PTB 32–36 weeks was 0.790 (95% CI
0.718–0.862). The largest AUC observed was for preterm
preeclampsia <32 weeks in the training sample (AUC=
0.953, 95% CI 0.728–0.881 with an AUC of 0.879 (95% CI
0.782–0.976 in the testing sample) (Table 2).

LDA-derived probabilities from the PTB ± preeclampsia
model yielded findings showing that the relationship
between risk scores and PTB ± preeclampsia overall and by
subtype was consistent across the training and testing

Table 1 Sample characteristics

Training Testing

PTB
n (%)

Term
n (%)

PTB
n (%)

Term
n (%)

Sample 120
(100.0)

120
(100.0)

80
(100.0)

80
(100.0)

Race/ethnicity

Hispanic 67 (55.8) 51 (42.5) 38 (47.5) 34 (42.5)

White 39 (32.5) 49 (40.8) 26 (32.5) 35 (43.8)

Asian 8 (6.7) 9 (7.5) 11 (13.8) 5 (6.3)

Black 3 (2.5) 3 (2.5) 3 (3.8) 1 (1.3)

Other 0 1 (0.8) 2 (2.5) 0

Age (Years)

<18 1 (0.8) 2 (1.7) 1 (1.3) 0

18–34 81 (67.5) 90 (75.0) 56 (70.0) 59 (73.8)

≥35 38 (31.7) 28 (23.3) 23 (28.8) 21 (26.3)

Other (all yes vs. no)

<12 years education 22 (18.3) 21 (17.5) 16 (20.0) 11 (13.8)

Born in the United
States

76 (63.3) 85 (70.8) 50 (62.5) 54 (67.5)

Low-Incomea 61 (50.8) 40 (33.3) 35 (43.8) 30 (37.5)

Nulliparous 54 (45.0) 64 (53.3) 40 (50.0) 39 (48.8)

Reported smoking 3 (2.5) 2 (1.7) 1 (1.3) 1 (1.3)

Obese 29 (24.2) 21 (17.5) 18 (22.5) 10 (12.5)

Preexisting diabetes 3 (2.5) 1 (0.8) 4 (5.0) 1 (1.3)

Preexisting
hypertension

7 (5.8) 3 (2.5) 10 (12.5) 0

Anemia 8 (6.7) 12 (10.0) 11 (13.8) 2 (2.5)

IPI < 12 Months 24 (20.0) 28 (23.3) 13 (16.3) 14 (17.5)

Preterm birth subgroups

Spontaneous 99 (82.5) 60 (75.0)

Provider initiated 17 (14.2) 18 (22.5)

Subtype unknown 4 (3.3) 2 (2.5)

<32 Weeks 60 (50.0) 40 (50.0)

Spontaneous 53 (44.2) 32 (40.0)

Provider initiated 5 (4.2) 8 (10.0)

Subtype unknown 2 (1.7) 2 (2.5)

32–36 Weeks 60 (50.0) 40 (50.0)

Spontaneous 46 (38.3) 28 (35.0)

Provider initiated 12 (10.0) 10 (12.5)

Subtype unknown 2 (1.7) 2 (2.5)

Preeclampsia (any) 19 (15.8) 2 (1.7) 18 (22.5) 1 (1.3)

<32 Weeks 9 (7.5) 13 (16.3)

32–36 Weeks 10 (8.3) 5 (6.3)

IPI interpregnancy interval
aReceiving assistance for medical services through the California MediCal
program (requires an income of < 138% of federal poverty level)
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subsets with improvements in detection at each lowering of
the probability cut point also associated with an increase in
term false positives (Fig. 2, Supplemental Table 3).
Detection was generally better for PTBs <32 weeks and for
preterm preeclampsia at each cut point than it was for
PTBs from 32 to 36 weeks. For example, 30.8% of women
with PTBs in the training sample and 27.5% of women
with PTBs in the testing sample had probability scores
≥0.8 vs. 3.3% of women with term birth in the training
sample and 1.3% of term birth in the testing sample (Fig. 2,
Supplemental Table 3). Detection at this same cut point
was best in women with a PTB <32 weeks and in women
with preterm preeclampsia in both samples (33.3% in the
training and 27.5% in the testing samples for PTB
<32 weeks and 36.8% in the training sample and 38.9% in
testing sample for preterm preeclampsia) (Fig. 2, Supple-
mental Table 3).

Discussion

Results from this study show that when considered in
combination, maternal characteristics and serum immune
and growth-related markers can be used at 15–20 weeks
of gestation to identify women at increased risk for
PTB occurring ± preeclampsia. The resulting LDA PTB ±
preeclampsia model was able to consistently identify
more than three and four women going on to deliver pre-
term across training and testing subsets with the best
performance for preterm preeclampsia where AUCs were

consistently at or above 88%. LDA-derived probabilities
were able to reliably specify a woman’s magnitude of
risk for PTB ± preeclampsia with higher probabilities
associated with lower term false-positive rates. For exam-
ple, while >60% of women going on to have a PTB ±
preeclampsia had a 15–20 week LDA-derived probability
score ≥0.5 so did >28% of pregnancies going on to have a
term delivery. While the detection rate was far lower at
higher probability cut-points, so was the rate of false posi-
tives in term pregnancies. For instance at a LDA-derived
probability score ≥0.8, detection rates for PTB were con-
sistently above 25% and detection rates for PTB with pre-
eclampsia were consistently above 35% with false-positive
rates in pregnancies going to term that were consistently
below 5%.

This is the first study that we are aware of that aimed to
predict PTB across subtypes ± preeclampsia. Given that
the AUCs from the present study equaled or exceeded
those of investigations focused on, for example, sponta-
neous PTB [14–16] or preeclampsia [22] it appears that
such an approach may offer similar predictive capacity and
broader applicability over other serum testing approaches.
For example, using circulating proteins, Saade and collea-
gues were able to identify women with a spontaneous
PTB <37 weeks with an observed AUC of 0.75 [15] and
Weiner and colleagues were able to identify women with a
spontaneous PTB <37 weeks with an observed AUC
of 0.76 using cell-free plasma RNAs [17] (compared with
an AUC of 0.81 (rounded) for spontaneous PTB in the
training set and 0.84 (rounded) in the testing set in the
present study). Our results with respect to prediction of
preterm preeclampsia also appear to meet or exceed other
serum tests for preterm preeclampsia. For example,
O’Gorman and colleagues reported an AUC of 0.95 for
preeclampsia before 32 weeks and an AUC of 0.87 for any
preeclampsia before 37 weeks using 11 to 13 week pla-
cental growth factor (PLGF) and pregnancy-associated
plasma protein A (PAPP-A) [22]. We observed an AUC
for preterm preeclampsia of 0.95 (rounded) in the training
set and 0.88 (rounded) in the testing set for preeclampsia
<32 weeks and we observed an AUC for all preterm pre-
eclampsia (<37 weeks) of 0.89 in the training sample and
0.88 in the testing sample.

While the present test appears to perform as well or
better for all births <37 weeks than other serum tests that are
specific to spontaneous PTB and preeclampsia, two caveats
to this should be noted. First, there is some evidence that
-omics-based tests for spontaneous PTBs perform better at
lower gestational ages than they do at higher gestational
ages. Although based on smaller sample sizes for earlier
PTBs than in the present study, Saade and colleagues [15]
reported an AUC of 0.98 for <35 vs. ≥35 weeks and
Catonwine and colleagues [16] reported an AUC of 0.89 for

Table 2 Performance of mid-pregnancy immune and growth factor
preterm birth ± preeclampsia test (overall and by preterm and
preeclampsia subgroups)

Training(n= 240) Testing(n= 160)

AUC 95% CI AUC 95% CI

All PTB 0.803 0.748–0.858 0.750 0.676–0.825

Spontaneous 0.806 0.748–0.864 0.837 0.770–0.903

Provider initiated 0.919 0.862–0.976 0.858 0.771–0.944

<32 0.837 0.777–0.897 0.806 0.717–0.896

Spontaneous 0.840 0.775–0.904 0.868 0.789–0.948

Provider initiated 0.927 0.818–1.000 0.878 0.738–1.000

34–36 0.790 0.718–0.862 0.827 0.748–0.906

Spontaneous 0.801 0.723–0.890 0.907 0.843–0.971

Provider initiated 0.932 0.871–0.995 0.893 0.796–0.989

Preeclampsia <37 weeks 0.889 0.822–0.959 0.883 0.804–0.963

<32 Weeks 0.953 0.728–0.881 0.879 0.782–0.976

32–36 Weeks 0.938 0.877–0.998 0.950 0.882–1.000

sPTB spontaneous preterm birth, PPROM preterm premature rupture
of membranes, AUC area under the receiver operating characteristic
curve
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birth at ≤34 weeks. Also, prediction of preterm pre-
eclampsia has been shown to be greatly improved if serum
testing is combined with ultrasound measures of mean
arterial pressure and uterine artery pulsatility index (AUCs
0.99 for preeclampsia <32 weeks and 0.92 for any pre-
eclampsia <37 weeks) [22]. Although we contend that the
currently presented algorithm represents an improvement
over these other methods given that it focus on the com-
monalities across PTB subtypes and relies on widely
available multiplex technology that allows multiple markers
to be measured in a single test, it is critical to note that there
are likely some benefits to focusing within subtypes. It may
be that the present test could be improved further by the
inclusion of, for example, a second-tier -omics-based test
that addresses other protein-based or metabolic factors. A
second-tier test that included ultrasound measures might
also increase detection rates for preterm preeclampsia. Such
an approach might allow for broad testing for baseline all
PTB ± preeclampsia risk and second-tier testing that is
specifically aimed at early PTBs and preterm preeclampsia
with a focus on term false-positive reduction.

The present study focused on the capacity for prediction
of PTB ± preeclampsia and as such, interpretation of causal
underpinnings suggested by biomarker patterns should be
approached with some caution. Still, given that the serum
markers in the final model have established links with poor
pregnancy outcomes and close ties to immune function and
growth [23, 24, 27, 28, 33–36, 38–42] some insight into
pathophysiological underpinnings is evident. Most notably,
the findings from the current study are supportive of the role
of perturbation of the cytokine network in the pathogenesis
of PTB as proposed by Romero and colleagues [24]—par-
ticularly given that the success of the present model in

prediction was driven by its reliance on a constellation of
markers that were often highly related yet contributed
independently to prediction. Study data also realized the
assertions of others who have hypothesized that combining
cross-pathway markers would increase test performance
[43]. By combining cross-way molecular markers with risks
like maternal age >34 years and low-income status, the
model took advantage of well-established maternal risks for
PTB [40] along with critical pathway signals.

Our findings of a persistent role in prediction for low-
income status (including when defined by participation in
state-sponsored health insurance programs for individuals
with incomes near or below the United States poverty line)
are consistent with other investigations [44, 45]. We suspect
that in our model, poverty is serving as a proxy for
unmeasured or underreported factors with links to PTB ±
preeclampsia including, possibly, the presence of nutritional
deficits, psycho-social or systemic stress, and greater
exposure to potentially harmful substances like tobacco,
alcohol, and pollution [44–46]. While we had information
about tobacco and alcohol use (as well as drug use) in the
study dataset, it is possible that these factors were under-
reported and as such, that the poverty flag is serving as a
proxy for these factors as well as others that may be
more common in lower income populations. These patterns
support the need for additional research and clinical
investigation with these women—particularly with respect
to early and potentially modifiable risks. Whatever the case,
It is important to note that in the present study these factors
alone were poor predictors of preterm birth (with AUCs
below 62% in the training and testing sets) and also that
they contributed a relatively small amount of information
over and above biomarkers alone (increasing the AUC for

Fig. 2 True and false-positive
rates by probability cut-points
based on mid-pregnancy
immune and growth factor
preterm birth ± preeclampsia test
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biomarkers only by 0.026+/−0.058 in the training set and
by 0.008+/−0.075 in the testing set). As such, it is clear
that these factors alone were not the sole drivers of overall
risk and may point to more upstream drivers. Nevertheless,
it is important to investigate these patterns more completely
given potential for modification. These data also suggest
that the efficacy of this test would not be diminished in
settings characterized by mostly high- or low-income indi-
viduals given that molecular factors appear to be the pri-
mary drivers of prediction.

While the present study represents an improvement
over other tests for PTB ± preeclampsia—particularly given
applicability across PTB subgroups and to larger popula-
tions given the use of a random sampling design and the

leveraging of multiplex technology available globally, there
are important limitations of our work. Most notably, the
present study relied on a fairly small number of cases and
controls (n= 400). While the case number used in the
present study is larger than those used to create other tests
[21–23] it is still far too small to make firm conclusions
about broad testing efficacy and performance. Also, because
the current study relied on a population-based sampling
design that reflected the true distribution of women parti-
cipating in prenatal screening by race/ethnicity grouping,
we were not powered to look at performance by all race/
ethnicity groupings. Further replication and clinical vali-
dation are critical next steps especially in women of Black
race/ethnicity and in women living in low-to-middle income
countries given their higher risk for PTB [1, 9, 10, 44]. It is
also important to note that because this study relied on
women who had already elected to participate in prenatal
screening for aneuploidies and neural tube defects, this
sample is biased towards women who made that choice and
as such, it is unclear is performance would be the same in
all pregnant women.

Given that the model performed well with samples col-
lected at as early as 15-weeks of gestation, we feel confident
that the model could be applied at earlier gestational ages.
Demonstrating such capacity will be critical given, for
example, that the efficacy of aspirin administration to pre-
vent preeclampsia has been shown to work the best if
started at ≤16-weeks of gestation [19]. It will also be
important to examine how this test behaves in identifying
pregnancies that deliver early term (37 and 38 weeks).
Given mounting data demonstrating that early term babies
are at increased risk for both short- and long-term morbidity
[47] and that these women are more likely to deliver pre-
term in the next pregnancy [48] it would be advantageous to
be able to identify these women early in pregnancy in an
effort to extend gestation.

It is also important to address some statistical and model
complexity issues raised by the current analyses. Specifi-
cally, it is notable that the present model is more complex
than those that rely on fewer factors. While we do not
believe this issue is of considerable consequence given that
all markers can be tested simultaneously using multiplex
technology (and as such, this complexity has minimal
impact on how much serum would be needed for the test or
how much it would cost), it does raise some issues with
respect to model transparency and comprehension. We have
presented the full LDA function used for classification to
address this issue (Table 3), however, the fact does remain
that the algorithm we developed would have to be applied
to any woman’s biomarker testing results before they could
be used clinically—likely via some electronic platform. It is
also of note that some markers in the final model—namely
FGF-basic and IL-4 exhibited a particularly large influence

Table 3 Final 15–20 week linear discriminate for preterm birth (PTB)
± preeclampsiaa

No preterm birth/PE Preterm birth/PE

Constant −2229 −2207

PAI1 413.49597 411.87715

Resistin 0.75258 1.88708

GP130 119.61108 118.44810

ENA-78 −29.26997 −28.53583

sFASL 5.54682 4.15190

FGF-basic 200.03457 204.35713

G-CSF 10.37429 10.68791

IL-1R2 −2.50083 −2.23721

IL-4 −97.38072 −94.75076

IL-4R 23.32864 22.69110

IL-5 65.86996 63.28213

IL-13 −35.04245 −33.45918

IL-17 −114.44812 −113.34045

IL-17F −1.80384 −2.20769

IFNB 4.26576 3.87186

M-CSF −46.88392 −47.52238

NGF 8.44649 6.96815

PDGFBB −23.52635 −22.59093

RAGE −4.15909 −3.75774

SCF 40.47520 37.72616

VEGFR3 14.01668 13.74962

Eotaxin −51.73581 −53.79304

MIG 5.47441 5.91727

MIP1B 16.13980 14.87844

RANTES 5.15387 4.74134

Age > 34 years −15.30541 −14.42951

Low-incomeb 3.66412 4.71827

aResults presented to the fifth decimal point to allow for complete
transparency and replication of complete algorithm
bReceiving assistance for medical services through the California
MediCal program (requires an income of <138% of the federal poverty
level)
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on the PTB ± preeclampsia algorithm while also having
large observed confidence intervals in initial multivariate
logistic models (Supplemental Table 2). Both of these fac-
tors were normally distributed after log transformation and
as such, the large risks and confidence intervals observed
appeared to be driven by the separation of values for these
markers in cases vs. controls after adjustment for the other
factors in the model. Given this and the contribution of both
to AUC performance these factors were kept in the model,
however, these patterns are of note and should be kept in
mind as replication and clinical validation efforts move
forward. It is possible that in other samples such separation
may not be evident and as such, some cost to the perfor-
mance of the model could occur. No such cost appeared to
transpire in the testing set but nonetheless, behavior of these
markers should be tracked as efforts move forward. In
addition, it should be recognized that because many of the
markers in the model are highly correlated but were retained
due to their individual contribution to the c-statistic, future
larger studies may find that not all markers are required for
maximum test performance. To this point, it should also be
recognized that any interpretation of underlying etiology
based on individual marker-specific findings should be
avoided given that the model presented is focused on pre-
diction and is based on a markers and maternal factors
considered in combination.

Along with maternal age and poverty status, mid-
pregnancy immune and growth factors measured by a sin-
gle test reliably identified women who went on to have a
PTB ± preeclampsia. Such information has the potential to
be used to identify women who may benefit from existing
and emerging interventions aimed at reducing rates of PTB
and preeclampsia [49].
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