Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impact of upper-limb position on estimated central blood pressure waveforms

Abstract

Pulse wave analysis (PWA) utilizes arm blood pressure (BP) waveforms to estimate aortic waveforms. The accuracy of central BP waveform estimation may be influenced by assessment site local haemodynamics. This study investigated whether local haemodynamic changes, induced via arm tilting ±30° relative to heart level, affect estimated central systolic BP (cSBP) and arterial wave reflection (central augmentation index, cAIx; aortic backward pressure wave, Pb). In 20 healthy adults (26.7 years [SD 5.2], 10 F) brachial BP waveforms were simultaneously recorded on experimental and control arms. The experimental arm was randomly repositioned three times (heart level, −30° heart level, +30° heart level), while the control arm remained fixed at heart level. For the experimental arm, arm repositioning resulted in a large (partial eta-squared > 0.14) effect size (ES) change in SBP (ES = 0.75, P < 0.001), cSBP (ES = 0.81, P < 0.001), and cAIx (ES = 0.75, P = 0.002), but not Pb (ES = 0.06, P = 0.38). In the control arm, cAIx (ES = 0.22, P = 0.013) but not SBP or cSBP significantly changed. Change in experimental arm cSBP was partially explained by brachial systolic blood velocity (P = 0.026) and mean diameter (P = 0.012), while change in cAIx was associated with brachial retrograde blood velocity (P = 0.020) and beta stiffness (P = 0.038). In conclusion, manipulation of assessment site local haemodynamics, including the blood velocity profile and local arterial stiffness, had a large effect on estimated cSBP and cAIx, but not on Pb. These findings do not invalidate PWA devices but do suggest that the accuracy of the estimated aortic pressure waveform is dependent on stable peripheral haemodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203.

    Article  CAS  PubMed  Google Scholar 

  2. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Hear J. 2014;35:1719–25.

    Article  Google Scholar 

  3. Pucci G, Battista F, Anastasio F, Sanesi L, Gavish B, Butlin M, et al. Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform. J Hypertens. 2016;34:1091–8.

    Article  CAS  PubMed  Google Scholar 

  4. Stoner L, Faulkner J, Lowe A, D ML, J MY, Love R, et al. Should the augmentation index be normalized to heart rate? J Atheroscler Thromb. 2014;21:11–6.

    Article  PubMed  Google Scholar 

  5. Westerhof BE, Guelen I, Westerhof N, Karemaker JM, Avolio A. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle. Hypertension. 2006;48:595–601.

    Article  CAS  PubMed  Google Scholar 

  6. Young Y, Abdolhosseini P, Brown F, Faulkner J, Lambrick D, Williams MA, et al. Reliability of oscillometric central blood pressure and wave reflection readings: effects of posture and fasting. J Hypertens. 2015;33:1588–93.

    Article  CAS  PubMed  Google Scholar 

  7. Stoner L, Credeur D, Fryer S, Faulkner J, Lambrick D, Gibbs BB. Reliability of pulse waveform separation analysis: effects of posture and fasting. J Hypertens. 2017;35:501–5.

    Article  CAS  PubMed  Google Scholar 

  8. Stoner L, Stone K, Hanson ED, Faulkner J, Fryer S, Credeur D. Reliability of pulse waveform separation analysis responses to an orthostatic challenge. Hypertens Res. 2018;41:176–82.

    Article  PubMed  Google Scholar 

  9. Mitchelmore A, Stoner L, Lambrick D, Sykes L, Eglinton C, Jobson S, et al. Oscillometric central blood pressure and central systolic loading in stroke patients: short-term reproducibility and effects of posture and fasting state. PLoS ONE. 2018;13:e0206329.

    Article  PubMed  PubMed Central  Google Scholar 

  10. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7.

    Article  Google Scholar 

  11. Stoner L, Lambrick DM, Faulkner J, Young J. Guidelines for the use of pulse wave analysis in adults and childre. J Atheroscler Thromb. 2012;5:1–3.

    Article  Google Scholar 

  12. Butlin M, Qasem A, Avolio AP. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2591–4.

    Google Scholar 

  13. Qasem A, Avolio A. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse. Hypertension. 2008;51:188–95.

    Article  CAS  PubMed  Google Scholar 

  14. Jones SC, Bilous M, Winship S, Finn P, Goodwin J. Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Press Monit. 2004;9:219–23.

    Article  PubMed  Google Scholar 

  15. Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit. 2007;12:113–7.

    Article  PubMed  Google Scholar 

  16. Stoner L, Sabatier MJ. Use of ultrasound for non-invasive assessment of flow-mediated dilation. J Atheroscler Thromb. 2012;19:407–21.

    Article  PubMed  Google Scholar 

  17. Stoner L, Sabatier M. Assessments of endothelial function using ultrasound. In: Applied aspects of ultrasonography in humans. 2012. http://cdn.intechopen.com/pdfs/35863/InTech-Assessment_of_endothelial_function_using_ultrasound.pdf.

    Google Scholar 

  18. Stoner L, McCully KK. Peak and time-integrated shear rates independently predict flow-mediated dilation. J Clin Ultrasound. 2012;40:341–51.

    Article  PubMed  Google Scholar 

  19. Stoner L, McCully KK. Velocity acceleration as a determinant of flow-mediated dilation. Ultrasound Med Biol. 2012;38:580–92.

    Article  PubMed  Google Scholar 

  20. Credeur DP, Vana LM, Kelley ET, Stoner L, Dolbow DR. Effects of intermittent pneumatic compression on leg vascular function in people with spinal cord injury: a pilot study. J Spinal Cord Med. 2017:1–9. https://doi.org/10.1080/10790268.2017.1360557.

  21. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc. 2009;41:3–13.

    Article  Google Scholar 

  22. Cohen J. Statistical power analysis for the behavioral science. Academic Press: New York, London; 1969.

  23. Raudenbush SW, Bryk AS. Hierarchical linear models: applications and data analysis methods. Sage, Thousand Oaks, CA 2002.

  24. Shoji T, Nakagomi A, Okada S, Ohno Y, Kobayashi Y. Invasive validation of a novel brachial cuff-based oscillometric device (Sphygmo Cor XCEL) for measuring central blood pressure. J Hypertens. 2017;35:69–75.

    Article  CAS  PubMed  Google Scholar 

  25. Nakagomi A, Shoji T, Okada S, Ohno Y, Kobayashi Y. Validity of the augmentation index and pulse pressure amplification as determined by the SphygmoCor XCEL device: a comparison with invasive measurements. Hypertens Res. 2018;41:27–32.

    Article  PubMed  Google Scholar 

  26. Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54:375–83.

    Article  CAS  PubMed  Google Scholar 

  27. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension. 2007;50:154–60.

    Article  CAS  PubMed  Google Scholar 

  28. Gaddum NR, Keehn L, Guilcher A, Gomez A, Brett S, Beerbaum P, et al. Altered dependence of aortic pulse wave velocity on transmural pressure in hypertension revealing structural change in the aortic wall. Hypertension. 2015;65:362–9.

    Article  CAS  PubMed  Google Scholar 

  29. Tschakovsky ME, Hughson RL. Venous emptying mediates a transient vasodilation in the human forearm. Am J Physiol Heart Circ Physiol. 2000;279:H1007–14.

    Article  CAS  PubMed  Google Scholar 

  30. Peng X, Schultz MG, Abhayaratna WP, Stowasser M, Sharman JE. Comparison of central blood pressure estimated by a cuff-based device with radial tonometry. Am J Hypertens. 2016;29:1173–8.

    Article  PubMed  Google Scholar 

  31. Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens. 2014;28:475–81.

    Article  CAS  PubMed  Google Scholar 

  32. Stoner L, Young JM, Fryer S, Sabatier MJ. The importance of velocity acceleration to flow-mediated dilation. Int J Vasc Med. 2012;2012:589213.

    PubMed  PubMed Central  Google Scholar 

  33. Caro CG, Pedley TJ, Schroter RC, Seed WA. The systemic arteries. In: The mechanics of the circulation. Cambridge University Press: Cambridge, UK ; 2012. p. 239–42. .

  34. Adamson SL, Whiteley KJ, Langille BL. Pulsatile pressure-flow relations and pulse-wave propagation in the umbilical circulation of fetal sheep. Circ Res. 1992;70:761–72.

    Article  CAS  PubMed  Google Scholar 

  35. Segers P, Carlier S, Pasquet A, Rabben SI, Hellevik LR, Remme E, et al. Individualizing the aorto-radial pressure transfer function: feasibility of a model-based approach. Am J Physiol Hear Circ Physiol. 2000;279:H542–9.

    Article  CAS  Google Scholar 

  36. Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG, et al. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol. 2013;62:1780–7.

    Article  PubMed  Google Scholar 

  37. Sharman JE, Marwick TH, Gilroy D, Otahal P, Abhayaratna WP, Stowasser M, et al. Randomized trial of guiding hypertension management using central aortic blood pressure compared with best-practice care: principal findings of the BP GUIDE study. Hypertension. 2013;62:1138–45.

    Article  CAS  PubMed  Google Scholar 

  38. Jaccoud L, Rotaru C, Heim A, Liaudet L, Waeber B, Hohlfeld P, et al. Major impact of body position on arterial stiffness indices derived from radial applanation tonometry in pregnant and nonpregnant women. J Hypertens. 2012;30:1161–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wang KL, Cheng HM, Sung SH, Chuang SY, Li CH, Spurgeon HA, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension. 2010;55:799–805.

    Article  CAS  PubMed  Google Scholar 

  40. Chirinos JA, Kips JG, Jacobs DR Jr., Brumback L, Duprez DA, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Stoner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoner, L., Stone, K., Zieff, G. et al. The impact of upper-limb position on estimated central blood pressure waveforms. J Hum Hypertens 33, 444–453 (2019). https://doi.org/10.1038/s41371-019-0179-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-019-0179-x

Search

Quick links