Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Labile hypertension: a new disease or a variability phenomenon?

Abstract

Blood pressure (BP) is a physiological parameter with short- and long-term variability caused by complex interactions between intrinsic cardiovascular (CV) mechanisms and extrinsic environmental and behavioral factors. Available evidence suggests that not only mean BP values are important, but also BP variability (BPV) might contribute to CV events. Labile hypertension (HTN) is referred to sudden rises in BP and it seems to be linked with unfavorable outcomes. The aim of this article was to review and summarize recent evidence on BPV phenomenon, unraveling the labile HTN concept along with the prognostic value of these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10:143–55.

    PubMed  Google Scholar 

  2. Floras JS. Blood pressure variability: a novel and important risk factor. Can J Cardiol. 2013;29:557–63.

    PubMed  Google Scholar 

  3. Mann SJ. The clinical spectrum of labile hypertension: a management dilemma. J Clin Hypertens (Greenwich). 2009;11:491–7.

    Google Scholar 

  4. Eich RH, Cuddy RP, Smulyan H, Lyons RH. Hemodynamics in labile hypertension. A follow-up study. Circulation. 1966;34:299–307.

    CAS  PubMed  Google Scholar 

  5. Tsioufis C. Blood pressure variability and cardiovascular prognosis. Many expectations but limited data. Hell J Cardiol. 2017;58:465–7.

    Google Scholar 

  6. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr., Collins KJ, Dennison Himmelfarb C, et al.: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017;71:1269–1324.

  7. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. Group ESCSD: 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    PubMed  Google Scholar 

  8. Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47:149–54.

    CAS  PubMed  Google Scholar 

  9. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20:2183–9.

    CAS  PubMed  Google Scholar 

  10. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107:1401–6.

    PubMed  Google Scholar 

  11. Sheppard JP, Hodgkinson J, Riley R, Martin U, Bayliss S, McManus RJ. Prognostic significance of the morning blood pressure surge in clinical practice: a systematic review. Am J Hypertens. 2015;28:30–41.

    PubMed  Google Scholar 

  12. Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension. 2001;38:852–7.

    CAS  PubMed  Google Scholar 

  13. de la Sierra A, Gorostidi M, Banegas JR, Segura J, de la Cruz JJ, Ruilope LM. Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile? Am J Hypertens. 2014;27:680–7.

    PubMed  Google Scholar 

  14. Zweiker R, Eber B, Schumacher M, Toplak H, Klein W. “Non-dipping” related to cardiovascular events in essential hypertensive patients. Acta Med Austria. 1994;21:86–9.

    CAS  Google Scholar 

  15. Hoshide S, Kario K, Hoshide Y, Umeda Y, Hashimoto T, Kunii O, et al. Associations between nondipping of nocturnal blood pressure decrease and cardiovascular target organ damage in strictly selected community-dwelling normotensives. Am J Hypertens. 2003;16:434–8.

    PubMed  Google Scholar 

  16. Cuspidi C, Sala C, Tadic M, Rescaldani M, Grassi G, Mancia G. Non-dipping pattern and subclinical cardiac damage in untreated hypertension: a systematic review and meta-analysis of echocardiographic studies. Am J Hypertens. 2015;28:1392–402.

    PubMed  Google Scholar 

  17. Amodeo C, Guimaraes GG, Picotti JC, dos Santos CC, Bezzerra Fonseca KD, Matins RF, et al. Morning blood pressure surge is associated with death in hypertensive patients. Blood Press Monit. 2014;19:199–202.

    PubMed  Google Scholar 

  18. Bombelli M, Fodri D, Toso E, Macchiarulo M, Cairo M, Facchetti R, et al. Relationship among morning blood pressure surge, 24-hour blood pressure variability, and cardiovascular outcomes in a white population. Hypertension. 2014;64:943–50.

    CAS  PubMed  Google Scholar 

  19. Pierdomenico SD, Pierdomenico AM, Cuccurullo F. Morning blood pressure surge, dipping, and risk of ischemic stroke in elderly patients treated for hypertension. Am J Hypertens. 2014;27:564–70.

    PubMed  Google Scholar 

  20. Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63:790–6.

    CAS  PubMed  Google Scholar 

  21. Oishi E, Ohara T, Sakata S, Fukuhara M, Hata J, Yoshida D, et al. Day-to-day blood pressure variability and risk of dementia in a general japanese elderly population: the Hisayama Study. Circulation. 2017;136:516–25.

    PubMed  PubMed Central  Google Scholar 

  22. Wang J, Shi X, Ma C, Zheng H, Xiao J, Bian H, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens. 2017;35:10–7.

    CAS  PubMed  Google Scholar 

  23. Xia Y, Liu X, Wu D, Xiong H, Ren L, Xu L, et al. Influence of beat-to-beat blood pressure variability on vascular elasticity in hypertensive population. Sci Rep. 2017;7:8394.

    PubMed  PubMed Central  Google Scholar 

  24. Olbers J, Gille A, Ljungman P, Rosenqvist M, Ostergren J, Witt N. High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm. Blood Press. 2018;27:249–55.

    PubMed  Google Scholar 

  25. Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood-pressure. Lancet. 1978;1:795–7.

    CAS  PubMed  Google Scholar 

  26. Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hara A, et al. Prognostic significance of night-time, early morning, and daytime blood pressures on the risk of cerebrovascular and cardiovascular mortality: the Ohasama Study. J Hypertens. 2006;24:1841–8.

    CAS  PubMed  Google Scholar 

  27. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F, et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990;81:528–36.

    CAS  PubMed  Google Scholar 

  28. Verdecchia P, Schillaci G, Gatteschi C, Zampi I, Battistelli M, Bartoccini C, et al. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation. 1993;88:986–92.

    CAS  PubMed  Google Scholar 

  29. Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors of all-cause mortality in clinical ambulatory monitoring: unique aspects of blood pressure during sleep. Hypertension. 2007;49:1235–41.

    CAS  PubMed  Google Scholar 

  30. Israel S, Israel A, Ben-Dov IZ, Bursztyn M. The morning blood pressure surge and all-cause mortality in patients referred for ambulatory blood pressure monitoring. Am J Hypertens. 2011;24:796–801.

    PubMed  Google Scholar 

  31. Verdecchia P, Angeli F, Mazzotta G, Garofoli M, Ramundo E, Gentile G, et al. Day-night dip and early-morning surge in blood pressure in hypertension: prognostic implications. Hypertension. 2012;60:34–42.

    CAS  PubMed  Google Scholar 

  32. Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variability of home blood pressure and incident cardiovascular disease in clinical practice: the J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84.

    CAS  PubMed  Google Scholar 

  33. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098.

    PubMed  PubMed Central  Google Scholar 

  34. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    PubMed  Google Scholar 

  35. Chang TI, Reboussin DM, Chertow GM, Cheung AK, Cushman WC, Kostis WJ, et al. Group* SR: visit-to-visit office blood pressure variability and cardiovascular outcomes in SPRINT (Systolic Blood Pressure Intervention Trial). Hypertension. 2017;70:751–8.

    CAS  PubMed  Google Scholar 

  36. McMullan CJ, Lambers Heerspink HJ, Parving HH, Dwyer JP, Forman JP, de Zeeuw D. Visit-to-visit variability in blood pressure and kidney and cardiovascular outcomes in patients with type 2 diabetes and nephropathy: a post hoc analysis from the RENAAL study and the Irbesartan Diabetic Nephropathy Trial. Am J Kidney Dis. 2014;64:714–22.

    PubMed  Google Scholar 

  37. Yeh CH, Yu HC, Huang TY, Huang PF, Wang YC, Chen TP, et al. The risk of diabetic renal function impairment in the first decade after diagnosed of diabetes mellitus is correlated with high variability of visit-to-visit systolic and diastolic blood pressure: a case control study. BMC Nephrol. 2017;18:99.

    PubMed  PubMed Central  Google Scholar 

  38. Chia YC, Lim HM, Ching SM: Long-term visit-to-visit blood pressure variability and renal function decline in patients with hypertension over 15 years. J Am Heart Assoc. 2016;5: pii: e003825.

  39. Yokota K, Fukuda M, Matsui Y, Hoshide S, Shimada K, Kario K. Impact of visit-to-visit variability of blood pressure on deterioration of renal function in patients with non-diabetic chronic kidney disease. Hypertens Res. 2013;36:151–7.

    CAS  PubMed  Google Scholar 

  40. Gosmanova EO, Mikkelsen MK, Molnar MZ, Lu JL, Yessayan LT, Kalantar-Zadeh K, et al. Association of systolic blood pressure variability with mortality, coronary heart disease, stroke, and renal disease. J Am Coll Cardiol. 2016;68:1375–86.

    PubMed  PubMed Central  Google Scholar 

  41. Whittle J, Lynch AI, Tanner RM, Simpson LM, Davis BR, Rahman M, et al. Visit-to-Visit Variability of BP and CKD Outcomes: results from the ALLHAT. Clin J Am Soc Nephrol. 2016;11:471–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yano Y, Fujimoto S, Kramer H, Sato Y, Konta T, Iseki K, et al. Long-term blood pressure variability, new-onset diabetes mellitus, and new-onset chronic kidney disease in the japanese general population. Hypertension. 2015;66:30–6.

    CAS  PubMed  Google Scholar 

  43. Yokota K, Fukuda M, Matsui Y, Kario K, Kimura K. Visit-to-visit variability of blood pressure and renal function decline in patients with diabetic chronic kidney disease. J Clin Hypertens (Greenwich). 2014;16:362–6.

    Google Scholar 

  44. Ricci F, De Caterina R, Fedorowski A. Orthostatic hypotension: epidemiology, prognosis, and treatment. J Am Coll Cardiol. 2015;66:848–60.

    PubMed  Google Scholar 

  45. Fedorowski A, Engstrom G, Hedblad B, Melander O. Orthostatic hypotension predicts incidence of heart failure: the Malmo preventive project. Am J Hypertens. 2010;23:1209–15.

    PubMed  Google Scholar 

  46. Fedorowski A, Hedblad B, Engstrom G, Gustav Smith J, Melander O. Orthostatic hypotension and long-term incidence of atrial fibrillation: the Malmo Preventive Project. J Intern Med. 2010;268:383–9.

    CAS  PubMed  Google Scholar 

  47. Voichanski S, Grossman C, Leibowitz A, Peleg E, Koren-Morag N, Sharabi Y, et al. Orthostatic hypotension is associated with nocturnal change in systolic blood pressure. Am J Hypertens. 2012;25:159–64.

    PubMed  Google Scholar 

  48. Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K, et al. A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens. 2007;25:2058–66.

    CAS  PubMed  Google Scholar 

  49. Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23:505–11.

    CAS  PubMed  Google Scholar 

  50. Kannel WB, Sorlie P, Gordon T. Labile hypertension: a faulty concept? The Framingham study. Circulation. 1980;61:1183–7.

    CAS  PubMed  Google Scholar 

  51. Julius S, Schork MA. Borderline hypertension--a critical review. J Chronic Dis. 1971;23:723–54.

    CAS  PubMed  Google Scholar 

  52. Nedostup AV, Fedorova VI, Dmitriev KV. [Labile hypertension in elderly: clinical features, autonomic regulation of circulation, approaches to treatment]. Klin Med (Mosk). 2000;78:27–32.

    CAS  Google Scholar 

  53. Migneco A, Ojetti V, Covino M, Mettimano M, Montebelli MR, Leone A, et al. Increased blood pressure variability in menopause. Eur Rev Med Pharmacol Sci. 2008;12:89–95.

    CAS  PubMed  Google Scholar 

  54. Ma RC, Yiu KH, Wong EH, Liu KH, Chan JY, Chow CC, et al. A man with labile blood pressure. PLoS Med. 2007;4:e111.

    PubMed  PubMed Central  Google Scholar 

  55. Robertson D, Hollister AS, Biaggioni I, Netterville JL, Mosqueda-Garcia R, Robertson RM. The diagnosis and treatment of baroreflex failure. N Engl J Med. 1993;329:1449–55.

    CAS  PubMed  Google Scholar 

  56. Heusser K, Tank J, Luft FC, Jordan J. Baroreflex failure. Hypertension. 2005;45:834–9.

    CAS  PubMed  Google Scholar 

  57. Kuchel O, Cuche JL, Hamet P, Tolis G, Messerli FH, Barbeau A, et al. Labile (borderline) hypertension--new aspects of a common disorder. Angiology. 1975;26:619–31.

    CAS  PubMed  Google Scholar 

  58. Julius S, Nesbitt S. Sympathetic overactivity in hypertension. A moving target. Am J Hypertens. 1996;9:113S–20S.

    CAS  PubMed  Google Scholar 

  59. Kotsis V, Stabouli S, Karafillis I, Papakatsika S, Rizos Z, Miyakis S, et al. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis. 2011;219:194–9.

    CAS  PubMed  Google Scholar 

  60. Mancia G. Short- and long-term blood pressure variability: present and future. Hypertension. 2012;60:512–7.

    CAS  PubMed  Google Scholar 

  61. Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8:147–53.

    CAS  PubMed  Google Scholar 

  62. Parati G, Faini A, Valentini M. Blood pressure variability: its measurement and significance in hypertension. Curr Hypertens Rep. 2006;8:199–204.

    PubMed  Google Scholar 

  63. Sanidas E, Papadopoulos DP, Grassos H, Velliou M, Tsioufis K, Barbetseas J, et al. Air pollution and arterial hypertension. A new risk factor is in the air. J Am Soc Hypertens. 2017;11:709–15.

    CAS  PubMed  Google Scholar 

  64. Parati G, Bilo G. Calcium antagonist added to angiotensin receptor blocker: a recipe for reducing blood pressure variability?: evidence from day-by-day home blood pressure monitoring. Hypertension. 2012;59:1091–3.

    CAS  PubMed  Google Scholar 

  65. Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension. 2006;47:155–61.

    CAS  PubMed  Google Scholar 

  66. Deedwania PC, Nelson JR. Pathophysiology of silent myocardial ischemia during daily life. Hemodynamic evaluation by simultaneous electrocardiographic and blood pressure monitoring. Circulation. 1990;82:1296–304.

    CAS  PubMed  Google Scholar 

  67. Rehman A, Zalos G, Andrews NP, Mulcahy D, Quyyumi AA. Blood pressure changes during transient myocardial ischemia: insights into mechanisms. J Am Coll Cardiol. 1997;30:1249–55.

    CAS  PubMed  Google Scholar 

  68. Wingfield D, Grodzicki T, Palmer AJ, Wells F, Bulpitt CJ. General Practice Hypertension Study G: transiently elevated diastolic blood pressure is associated with a gender-dependent effect on cardiovascular risk. J Hum Hypertens. 2005;19:347–54.

    CAS  PubMed  Google Scholar 

  69. Peters R, Wells F, Bulpitt C, Beckett N. Impact of transiently elevated diastolic pressure on cause of death: 29-year follow-up from the General Practice Hypertension Study Group. J Hypertens. 2013;31:71–6.

    CAS  PubMed  Google Scholar 

  70. Sideris DA, Kontoyannis DA, Michalis L, Adractas A, Moulopoulos SD. Acute changes in blood pressure as a cause of cardiac arrhythmias. Eur Heart J. 1987;8:45–52.

    CAS  PubMed  Google Scholar 

  71. Zuber SM, Kantorovich V, Pacak K. Hypertension in pheochromocytoma: characteristics and treatment. Endocrinol Metab Clin North Am. 2011;40:295–311. vii

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Manger WM. The protean manifestations of pheochromocytoma. Horm Metab Res. 2009;41:658–63.

    CAS  PubMed  Google Scholar 

  73. Mann SJ. Severe paroxysmal hypertension (pseudopheochromocytoma): understanding the cause and treatment. Arch Intern Med. 1999;159:670–4.

    CAS  PubMed  Google Scholar 

  74. Mann SJ. Severe paroxysmal hypertension (pseudopheochromocytoma). Curr Hypertens Rep. 2008;10:12–8.

    PubMed  Google Scholar 

  75. Sharabi Y, Goldstein DS, Bentho O, Saleem A, Pechnik S, Geraci MF, et al. Sympathoadrenal function in patients with paroxysmal hypertension: pseudopheochromocytoma. J Hypertens. 2007;25:2286–95.

    CAS  PubMed  Google Scholar 

  76. Garcha AS, Cohen DL. Catecholamine excess: pseudopheochromocytoma and beyond. Adv Chronic Kidney Dis. 2015;22:218–23.

    PubMed  Google Scholar 

  77. Le HM, Carbutti G, Ilisei D, Bouccin E, Vandemergel X. Pseudopheochromocytoma associated with domestic assault. Case Rep Cardiol. 2016;2016:6580215.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gustavsen PH, Hoegholm A, Bang LE, Kristensen KS. White coat hypertension is a cardiovascular risk factor: a 10-year follow-up study. J Hum Hypertens. 2003;17:811–7.

    CAS  PubMed  Google Scholar 

  79. Ugajin T, Hozawa A, Ohkubo T, Asayama K, Kikuya M, Obara T, et al. White-coat hypertension as a risk factor for the development of home hypertension: the Ohasama study. Arch Intern Med. 2005;165:1541–6.

    PubMed  Google Scholar 

  80. Cuspidi C, Sala C, Grassi G, Mancia G. White coat hypertension: to treat or not to treat? Curr Hypertens Rep. 2016;18:80.

    PubMed  Google Scholar 

  81. Franklin SS, O’Brien E, Staessen JA. Masked hypertension: understanding its complexity. Eur Heart J. 2017;38:1112–8.

    CAS  PubMed  Google Scholar 

  82. Siven SS, Niiranen TJ, Kantola IM, Jula AM. White-coat and masked hypertension as risk factors for progression to sustained hypertension: the Finn-Home study. J Hypertens. 2016;34:54–60.

    CAS  PubMed  Google Scholar 

  83. Sega R, Trocino G, Lanzarotti A, Carugo S, Cesana G, Schiavina R, et al. Alterations of cardiac structure in patients with isolated office, ambulatory, or home hypertension: data from the general population (Pressione Arteriose Monitorate E Loro Associazioni [PAMELA] Study). Circulation. 2001;104:1385–92.

    CAS  PubMed  Google Scholar 

  84. Robertson D. Orthostatic hypertension: the last hemodynamic frontier. Hypertension. 2011;57:158–9.

    CAS  PubMed  Google Scholar 

  85. Chhabra L, Spodick DH. Orthostatic hypertension: recognizing an underappreciated clinical condition. Indian Heart J. 2013;65:454–6.

    PubMed  PubMed Central  Google Scholar 

  86. Streeten DH, Auchincloss JH Jr., Anderson GH Jr, Richardson RL, Thomas FD, Miller JW. Orthostatic hypertension. Pathogenetic studies. Hypertension. 1985;7:196–203.

    CAS  PubMed  Google Scholar 

  87. Streeten DH, Anderson GH Jr., Richardson R, Thomas FD. Abnormal orthostatic changes in blood pressure and heart rate in subjects with intact sympathetic nervous function: evidence for excessive venous pooling. J Lab Clin Med. 1988;111:326–35.

    CAS  PubMed  Google Scholar 

  88. Agnoletti D, Valbusa F, Labat C, Gautier S, Mourad JJ, Benetos A.PARTAGE study Investigators. Evidence for a prognostic role of orthostatic hypertension on survival in a very old institutionalized population. Hypertension. 2016;67:191–6.

    CAS  PubMed  Google Scholar 

  89. Veronese N, De Rui M, Bolzetta F, Zambon S, Corti MC, Baggio G, et al. Orthostatic changes in blood pressure and mortality in theelderly: the Pro.V.A study. Am J Hypertens. 2015;28:1248–56.

    CAS  PubMed  Google Scholar 

  90. Bursztyn M, Jacobs JM, Hammerman-Rozenberg A, Stessman J. Prevalence of orthostatic hypertension in the very elderly and its relationship to all-cause mortality. J Hypertens. 2016;34:2053–8.

    CAS  PubMed  Google Scholar 

  91. Weiss A, Beloosesky Y, Grossman A, Shlesinger A, Koren-Morag N, Grossman E. The association between orthostatic hypertension and all-cause mortality in hospitalized elderly persons. J Geriatr Cardiol. 2016;13:239–43.

    PubMed  PubMed Central  Google Scholar 

  92. Eguchi K, Kario K, Hoshide S, Hoshide Y, Ishikawa J, Morinari M, et al. Greater change of orthostatic blood pressure is related to silent cerebral infarct and cardiac overload in hypertensive subjects. Hypertens Res. 2004;27:235–41.

    PubMed  Google Scholar 

  93. Matsubayashi K, Okumiya K, Wada T, Osaki Y, Fujisawa M, Doi Y, et al. Postural dysregulation in systolic blood pressure is associated with worsened scoring on neurobehavioral function tests and leukoaraiosis in the older elderly living in a community. Stroke. 1997;28:2169–73.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Sanidas.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanidas, E., Grassos, C., Papadopoulos, D.P. et al. Labile hypertension: a new disease or a variability phenomenon?. J Hum Hypertens 33, 436–443 (2019). https://doi.org/10.1038/s41371-018-0157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0157-8

This article is cited by

Search

Quick links