Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autonomic dysfunction in programmed hypertension

Abstract

Hypertension is an important modifiable risk factor for cardiovascular diseases. Its high prevalence, combined with the significant morbidity and mortality associated with secondary complications, make it a major public health concern. Despite decades of research, over 95% of all cases of hypertension remain of unknown etiology, necessitating that treatments target the established symptoms and not the cause. One of the important recent advances in hypertension research is an understanding that hypertension often may have a developmental origin. A substantial body of evidence indicates that exposure to an adverse intrauterine environment during critical periods of development may predispose an individual to develop hypertension later in life. A causative mechanism has yet to be identified, but may include epigenetic modifications, and/or alterations in renal, vascular or autonomic cardiovascular functions. This review will present evidence regarding changes in autonomic activity as a possible causative pathophysiological mechanism underlying the development of programmed hypertension. In man, low birth weight is the best-known risk factor for hypertension of developmental origins, although this is a broad surrogate measure for intrauterine adversity. This review will include clinical studies across the lifespan that have investigated autonomic function in individuals with fetal growth restriction and those born preterm. A determination of whether altered autonomic function is seen in these individuals in early life is imperative, as hypertensive disorders that have their origins in utero, and that can be identified early, will open the door to risk stratification, and the development of new strategies that prevent or specifically target these mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. World Health Organisation. A global brief on hypertension: Silent killer, global public health crisis. 2013. http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf [accessed 17 July 2013] [WebCite Cache ID 6IBqAI2eN]. 2015.

  2. Kirkland EB, Heincelman M, Bishu KG, Schumann SO, Schreiner A, Axon RN, et al. Trends in Healthcare Expenditures Among US Adults With Hypertension: National Estimates, 2003–2014. J Am Heart Assoc. 2018;7:e008731.

    Article  Google Scholar 

  3. Carretero OA, Oparil S. Essential hypertension. Part I: Definition and etiology. Circulation. 2000;101:329–35.

    Article  CAS  PubMed  Google Scholar 

  4. Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108:227–37.

    Article  CAS  PubMed  Google Scholar 

  5. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;327:1077–81.

    Article  Google Scholar 

  6. Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 2004;65:1339–48.

    Article  PubMed  Google Scholar 

  7. Dasinger JH, Davis GK, Newsome AD, Alexander BT. Developmental programming of hypertension: physiological mechanisms. Hypertension. 2016;68:826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96:611–22.

    PubMed  Google Scholar 

  9. Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50:862–8.

    Article  CAS  PubMed  Google Scholar 

  10. Menuet C, Le S, Dempsey B, Connelly AA, Kamar JL, Jancovski N, et al. Excessive respiratory modulation of blood pressure triggers hypertension. Cell Metab. 2017;25:739–48.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson EA, Sinkey C, Lawton W, Mark A. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177–83.

    Article  CAS  PubMed  Google Scholar 

  12. Grassi G. Role of the sympathetic nervous system in human hypertension. J Hypertens. 1998;16:1979–87.

    Article  CAS  PubMed  Google Scholar 

  13. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13(S4):99S–105S.

    Article  CAS  PubMed  Google Scholar 

  14. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep. 2009;11:199–205.

    Article  PubMed  Google Scholar 

  15. Lopes H, Silva H, Consolim-Colombo F, Barreto Filho J, Riccio G, Giorgi D, et al. Autonomic abnormalities demonstrable in young normotensive subjects who are children of hypertensive parents. Braz J Med Biol Res. 2000;33:51–4.

    Article  CAS  PubMed  Google Scholar 

  16. Neumann SA, Jennings JR, Muldoon MF, Manuck SB. White-coat hypertension and autonomic nervous system dysregulation. Am J Hypertens. 2005;18:584–8.

    Article  PubMed  Google Scholar 

  17. Julius S, Valentini M, Palatini P. Overweight Hypertension: a 2-way street? Hypertension. 2000;35:807–13.

    Article  CAS  PubMed  Google Scholar 

  18. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension achievements and perspectives. Hypertension. 2009;54:690–7.

    Article  CAS  PubMed  Google Scholar 

  19. Grassi G. Sympathetic neural activity in hypertension and related diseases. Am J Hypertens. 2010;23:1052–60.

    Article  PubMed  Google Scholar 

  20. Corrao G, Parodi A, Nicotra F, Zambon A, Merlino L, Cesana G, et al. Better compliance to antihypertensive medications reduces cardiovascular risk. J Hypertens. 2011;29:610–8.

    Article  CAS  PubMed  Google Scholar 

  21. Myers MG, Olson DP. Central nervous system control of metabolism. Nature. 2012;491:357–63.

    Article  CAS  PubMed  Google Scholar 

  22. Wulsin LR, Horn PS, Perry JL, Massaro JM, D’Agostino RB. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J Clin Endocrinol Metab. 2015;100:2443–8.

    Article  CAS  PubMed  Google Scholar 

  23. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease the Hoorn study. Diabetes Care. 2001;24:1793–8.

    Article  CAS  PubMed  Google Scholar 

  24. Palatini P, Dorigatti F, Zaetta V, Mormino P, Mazzer A, Bortolazzi A, et al. Heart rate as a predictor of development of sustained hypertension in subjects screened for stage 1 hypertension: the HARVEST Study. J Hypertens. 2006;24:1873–80.

    Article  CAS  PubMed  Google Scholar 

  25. Judy W, Watanabe A, Henry D, Besch H, Murphy W, Hockel G. Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res. 1976;38:21–9.

    Article  CAS  PubMed  Google Scholar 

  26. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch‐up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31.

    Article  CAS  PubMed  Google Scholar 

  27. Barker DJP, Osmond C, Golding J, Kuh D, Wadsworth MEJ. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ: Br Med J. 1989;298:564–7.

    Article  CAS  Google Scholar 

  28. Skilton MR, Viikari JS, Juonala M, Laitinen T, Lehtimäki T, Taittonen L, et al. Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol. 2011;31:2975–81.

    Article  CAS  PubMed  Google Scholar 

  29. Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le Noble F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation. 2010;121:2427–36.

    Article  PubMed  Google Scholar 

  30. Galland BC, Taylor BJ, Bolton DP, Sayers RM. Heart rate variability and cardiac reflexes in small for gestational age infants. J Appl Physiol. 2006;100:933–9.

    Article  PubMed  Google Scholar 

  31. van Deutekom AW, Chinapaw MJM, Gademan MGJ, Twisk JWR, Gemke R, Vrijkotte TGM. The association of birth weight and infant growth with childhood autonomic nervous system activity and its mediating effects on energy-balance-related behaviours-the ABCD study. Int J Epidemiol. 2016;45:1079–90.

    Article  PubMed  Google Scholar 

  32. IJzerman RG, Stehouwer CD, de Geus EJ, van Weissenbruch MM, Delemarre-van de Waal HA, Boomsma DI. Low birth weight is associated with increased sympathetic activity dependence on genetic factors. Circulation. 2003;108:566–71.

    Article  PubMed  Google Scholar 

  33. Boguszewski MC, Johannsson G, Fortes LC, Sverrisdóttir YB. Low birth size and final height predict high sympathetic nerve activity in adulthood. J Hypertens. 2004;22:1157–63.

    Article  CAS  PubMed  Google Scholar 

  34. Gennser G, Rymark P, Isberg PE. Low birth weight and risk of high blood pressure in adulthood. BMJ. 1988;296:1498–500.

    Article  CAS  PubMed  Google Scholar 

  35. Weitz G, Deckert P, Heindl S, Struck J, Perras B, Dodt C. Evidence for lower sympathetic nerve activity in young adults with low birth weight. J Hypertens. 2003;21:943–50.

    Article  CAS  PubMed  Google Scholar 

  36. Scherrer U, Randin D, Tappy L, Vollenweider P, Jéquier E, Nicod P. Body fat and sympathetic nerve activity in healthy subjects. Circulation. 1994;89:2634–40.

    Article  CAS  PubMed  Google Scholar 

  37. Aziz W, Schlindwein FS, Wailoo M, Biala T, Rocha FC. Heart rate variability analysis of normal and growth restricted children. Clin Auton Res. 2012;22:91–7.

    Article  PubMed  Google Scholar 

  38. Rakow A, Katz-Salamon M, Ericson M, Edner A, Vanpée M,Kth, et al. Decreased heart rate variability in children born with low birth weight. Pediatr Res. 2013;74:339.

    Article  PubMed  Google Scholar 

  39. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, Blood Pressure, and Heart Rate Variability: The Atherosclerosis Risk in Communities (ARIC) Study. Hypertens: J Am Heart Assoc. 2003;42:1106–11.

    Article  CAS  Google Scholar 

  40. Dissanayake HU, McMullan RL, Gordon A, Caterson ID, Celermajer DS, Phang M, et al. Noninvasive assessment of autonomic function in human neonates born at the extremes of fetal growth spectrum. Physiol Rep. 2018;6:e13682-n/a.

    Article  Google Scholar 

  41. Patural H, Barthelemy JC, Pichot V, Mazzocchi C, Teyssier G, Damon G, et al. Birth prematurity determines prolonged autonomic nervous system immaturity. Clin Auton Res. 2004;14:391–5.

    Article  CAS  PubMed  Google Scholar 

  42. Cohen E, Wong FY, Wallace EM, Mockler JC, Odoi A, Hollis S, et al. Fetal-growth-restricted preterm infants display compromised autonomic cardiovascular control on the first postnatal day but not during infancy. Pediatr Res. 2017;82:474–82.

    Article  CAS  PubMed  Google Scholar 

  43. Mathewson KJ, Van Lieshout RJ, Saigal S, Boyle MH, Schmidt LA. Reduced respiratory sinus arrhythmia in adults born at extremely low birth weight: evidence of premature parasympathetic decline? Int J Psychophysiol. 2014;93:198–203.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RSC. The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev. 2013;89:145–52.

    Article  PubMed  Google Scholar 

  45. Andriessen P, Oetomo SB, Peters C, Vermeulen B, Pieter FFW, Blanco CE. Baroreceptor reflex sensitivity in human neonates: the effect of postmenstrual age. J Physiol. 2005;568:333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Witcombe NB, Yiallourou SR, Sands SA, Walker AM, Horne RSC. Preterm birth alters the maturation of baroreflex sensitivity in sleeping infants. Pediatrics. 2012;129:e89–96.

    Article  PubMed  Google Scholar 

  47. Cohen G, Vella S, Jeffery H, Lagercrantz H, Katz-Salamon M. Cardiovascular stress hyperreactivity in babies of smokers and in babies born preterm. Circulation. 2008;118:1848–53.

    Article  PubMed  Google Scholar 

  48. Van Reempts PJ, Wouters A, De Cock W, Van Acker KJ. Stress responses to tilting and odor stimulus in preterm neonates after intrauterine conditions associated with chronic stress. Physiol Behav. 1997;61:419–24.

    Article  PubMed  Google Scholar 

  49. Yiallourou SR, Wallace EM, Whatley C, Odoi A, Hollis S, Weichard AJ, et al. Sleep: a window into autonomic control in children born preterm and growth restricted. SLEEP. 2017;40:zsx048.

  50. He X, Zhao M, Bi X, Sun L, Yu X, Zhao M, et al. Novel strategies and underlying protective mechanisms of modulation of vagal activity in cardiovascular diseases: vagal modulation and cardiovascular diseases. Br J Pharmacol. 2015;172:5489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Longin E, Gerstner T, Schaible T, Lenz T, König S. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med. 2006;34:303–8.

    Article  PubMed  Google Scholar 

  52. Woods LL, Weeks DA. Naturally occurring intrauterine growth retardation and adult blood pressure in rats. Pediatr Res. 2004;56:763–7.

    Article  PubMed  Google Scholar 

  53. Nuyt AM. Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci. 2008;114:1–17.

    Article  CAS  PubMed  Google Scholar 

  54. Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension. 2005;45:754–8.

    Article  CAS  Google Scholar 

  55. de Rooij SR, Jones A, Phillips DI, Osmond C, Karemaker JM, Roseboom TJ, et al. Prenatal undernutrition and autonomic function in adulthood. Psychosom Med. 2016;78:991–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Juonala M, Cheung MMH, Sabin MA, Burgner D, Skilton MR, Kähönen M, et al. Effect of birth weight on life-course blood pressure levels among children born premature: the Cardiovascular Risk in Young Finns Study. J Hypertens. 2015;33:1542–8.

    Article  CAS  PubMed  Google Scholar 

  57. Mann SJ. Neurogenic hypertension: pathophysiology, diagnosis and management. Clin Auton Res. 2018;28:363–74.

    Article  PubMed  Google Scholar 

  58. Linz D, Hohl M, Elliott AD, Lau DH, Mahfoud F, Esler MD, et al. Modulation of renal sympathetic innervation: recent insights beyond blood pressure control. Clin Auton Res. 2018;28:375–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

HUD was supported by an Australian Postgraduate Award (SC0042). MRS was supported by a National Heart Foundation of Australia Future Leader Fellowship (100419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaimie W. Polson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissanayake, H.U., Skilton, M.R. & Polson, J.W. Autonomic dysfunction in programmed hypertension. J Hum Hypertens 33, 267–276 (2019). https://doi.org/10.1038/s41371-018-0142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0142-2

This article is cited by

Search

Quick links