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BACKGROUND: Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to
interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests
that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune
diseases.
OBJECTIVE: In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum
metabolome and contributes to the development of autoimmune diseases.
METHODS: We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants
who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn’s disease (IBD),
hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N= 62), along with matched controls
(N= 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of
environmental contaminants and metabolites.
RESULTS: Differences in exposure levels were found between the controls and those who later developed various diseases. High
contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically,
we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and
specific per- and polyfluorinated substances (PFAS).
IMPACT STATEMENT: Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases.
However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that
exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of
autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various
diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were
associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental
contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.
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INTRODUCTION
Exposure to environmental contaminants contributes to the
global burden of many chronic diseases [1–5]. Over the past few
decades, the prevalence of autoimmune diseases increased in
both developed and developing countries, resulting in a high
disease burden [6–10]. Autoimmune diseases are often manifested
in early childhood and are also common among pregnant mothers
[8, 11]. They are chronic, impact child growth and development,
and require long-term management and care [12, 13]. Many
studies suggest that a combination of genetic predisposition,
environmental and maternal factors as well as their interactions
play a significant role in the etiology of autoimmune diseases
[14–21].
Exposure of humans to environmental chemicals begins already

during the “sensitive window” of human early development,
including the prenatal stage [22–25]. Prenatal exposure to PFAS
and other contaminants has been associated with abnormal
metabolism and progression to autoimmune diseases such as type
1 diabetes (T1D) [26], celiac disease (CD) [16, 18], Crohn’s disease
(IBD) [27] later in life. PFAS exposure, for instance, alters the levels
of phospholipids and contributes to the risk of T1D [26]. Although
most autoimmune diseases share common pathogenicity and
genetic risk factors [16, 28], their underlying pathogenic mechan-
isms are poorly understood. Besides exposure to environmental
chemicals, perinatal factors such as low birth weight [29], the gut
microbiome [30–35], and maternal diet [36–38] are also attributed
to the progression of autoimmune diseases.
Given the potential impact of exposure to environmental

contaminants and the role of maternal factors in the progression
of autoimmune diseases [39], it is important to characterize the

prenatal and early-life exposome to better understand the
pathogenesis of autoimmune diseases. Herein, we hypothesized
that exposure to environmental contaminants impacts cord serum
metabolome, which may contribute to the development of one or
more autoimmune diseases in the general population cohort (All
Babies In Southeast Sweden, ABIS) [40, 41]. These outcomes were
selected based on their incidence in the study cohort. It is well
known that the impact of environmental exposures is highly
individual, with strong gene-environment interactions factors
playing a role in the health impacts of exposures. It is also well-
known that several autoimmune diseases share common risk
factors or pathogenic mechanisms. For instance, T1D and CD
exhibit shared predisposing alleles in the class II HLA-region [28].
Around 6% of T1D patients also develop clinical CD, and
individuals with CD face an increased risk of developing T1D
before the age of 20 [42]. On the other hand, T1D, multiple
sclerosis, and rheumatoid arthritis are categorized as T-cell-
mediated autoimmune diseases [43]. Significantly, there are
indications that fundamental processes governing T-cell function-
ality are interconnected with changes in cellular metabolic
programs [44]. External perturbations to key metabolic processes
can hinder T-cell activation, differentiation, and cytokine
production.
In the ABIS cohort, we analyzed contaminants and metabolite

profiles from cord serum collected at birth, using integrated
exposomics and metabolomics approaches. We investigated (i)
the levels of exposure and significant differences between
controls and cases, (ii) the associations of contaminant exposure
with cord serum metabolic profiles, and (iii) the impact of
contaminant exposure levels on cord serum metabolic profiles.
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Fig. 1 Summary of our work, which aimed to investigate how prenatal exposure to environmental contaminants alters the cord serum
metabolome in the ABIS cohort.We used metabolomics to determine the levels of exposure to environmental contaminants and metabolites
in the cord blood. Our work involved three main stages. Firstly, we examined the levels of exposure and significant differences between
control (N= 268) and cases (N= 62). Secondly, we studied the associations of contaminant exposure with cord serum metabolic profiles.
Finally, we investigated the impact of contaminant exposure on cord serum metabolites. Overall, our work sheds light on the effects of
environmental contaminants on the cord serum metabolome, which may have implications for the future progression of autoimmune
diseases.
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MATERIALS AND METHODS
Study design
ABIS, a general population cohort consisting of 17,000 children born 1st of
Oct 1997–1st of Oct 1999, followed prospectively with regular follow-ups.
ABIS is connected to the Swedish National Diagnosis Register which give
information about diagnosis of autoimmune disease. Stool samples were
collected from ca 1800 individuals at 1 year of age, and microbiome studies
have been performed [34, 39]. The present study includes subjects (N= 62)
from this group who later developed one or more autoimmune and
inflammatory diseases such as CD (N= 28), IBD (N= 7), hypothyroidism
(HT) (N= 6), juvenile idiopathic arthritis (JIA) (N= 9) and T1D (N= 12), along
with their controls matched for sex and age at the time of diagnosis
(N= 268). The average age of diagnosis was 11.5 years in CD, 16 years in
IBD, 15 years in JIA, 16 years in HT, and 13.5 years in T1D group [39]. The
cohort is representative of a general population in Sweden. Related to
socioeconomical factors (e.g., parental education) or other lifestyle factors,
there was no statistically significant differences between the groups. The
cord blood samples collected during birth were subjected to metabolomics
analysis. Figure 1 summarizes the study design and integrated workflow.
For more detailed information about demographic characteristics and
individual diseases, readers are referred to our previous study [39].

Analysis of metabolome and environmental contaminants
A total of 330 cord blood samples were randomized and analyzed as
described below. Shortly, two methods were applied for separate
extraction of lipids and polar/semipolar metabolites and the extracts were
then analyzed using an ultra-high-performance liquid chromatography
quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) as
described previously [39] and the data were processed using MZmine
2.53 [45]. Quantification was performed using calibration curves and the
identification was done with a custom database. Level 1 identification
refers to identified compounds where reference compounds are available,
while level 2 identification denotes compounds identified based on their
MS/MS in comparison with mass spectrometry libraries, as defined by the
Metabolomics Standards Initiative (MSI). Quality control was performed by
analyzing pooled quality control samples. In addition, extracted blank
samples, standards compounds, and reference plasma (NIST SRM 1950);
purchased from the National Institute of Standards and Technology at the
US Department of Commerce (Washington, DC, USA)), were analyzed as
part of the quality control procedure.

Analysis of molecular lipids. 10 µl of serum was mixed with 10 µl 0.9%
NaCl and extracted with 120 µl of CHCl3: MeOH (2:1, v/v) solvent mixture
containing internal standard mixture (c= 2.5 µg/ml; 1,2-diheptadecanoyl-
sn-glycero-3-phosphoethanolamine (PE(17:0/17:0)), N-heptadecanoyl-D-
erythro-sphingosylphosphorylcholine (SM(d18:1/17:0)), N-heptadecanoyl-
D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadecanoyl-sn-glycero-3-
phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-
phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-
phosphocholine (PC(16:0/d31/18:1)) and, triheptadecanoylglycerol
(TG(17:0/17:0/17:0)). The samples were vortexed and let stand on the ice
for 30min before centrifugation (9400 rcf, 3 min). 60 µl of the lower layer of
was collected and diluted with 60 µl of CHCl3: MeOH. The samples were
kept at -80 °C until analysis.
Samples were analyzed by UHPLC-QTOFMS (Agilent Technologies; Santa

Clara, CA, USA). The analysis was carried out on an ACQUITY UPLC BEH C18
column (2.1mm × 100mm, particle size 1.7 μm) by Waters (Milford, USA). The
eluent system consisted of (A) 10mM NH4Ac in H2O and 0.1% formic acid
and (B) 10mM NH4Ac in acetonitrile (ACN): isopropanol (IPA) (1:1) and 0.1%
formic acid. The gradient was as follows: 0–2min, 35% solvent B; 2–7min,
80% solvent B; 7–14min 100% solvent B. The flow rate was 0.4ml/min.
The following steps were applied in data processing with MZmine 2.53: (i)

Mass detection with a noise level of 1000, (ii) Chromatogram builder with a
minimum time span of 0.08min, minimum height of 1000 and a m/z
tolerance of 0.006m/z or 10.0 ppm, (iii) Chromatogram deconvolution using
the local minimum search algorithm with a 70% chromatographic threshold,
0.05min minimum RT range, 5% minimum relative height, 1200 minimum
absolute height, a minimum ration of peak top/edge of 1.2 and a peak
duration range of 0.08–5.0, (iv), Isotopic peak grouper with a m/z tolerance of
5.0 ppm, RT tolerance of 0.05min, maximum charge of 2 and with the most
intense isotope set as the representative isotope, (v) Join aligner with a m/z
tolerance of 0.009 or 10.0 ppm and a weight for of 2, a RT tolerance of
0.15min and a weight of 1 and with no requirement of charge state or ID
and no comparison of isotope pattern, (vi) Peak list row filter with a minimum

of 10% of the samples (vii) Gap filling using the same RT and m/z range gap
filler algorithm with an m/z tolerance of 0.009m/z or 11.0 ppm, (vii)
Identification of lipids using a custom database search with an m/z tolerance
of 0.008m/z or 8.0 ppm and a RT tolerance of 0.25min. Identification of lipids
was based on an in-house library based on LC-MS/MS data on retention time
and mass spectra. The identification was done with a custom database, with
identification levels 1 and 2, i.e., based on authentic standard compounds
(level 1) or based on MS/MS identification (level 2).
Quantification of lipids was performed using a 7-point internal calibration

curve (0.1–5 µg/mL) using the following lipid-class specific authentic
standards: using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocho-
line (PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-
3-phosphocholine (PC(18:0p/18:1(9Z))), 1-stearoyl-2-hydroxy-sn-glycero-3-
phosphocholine (LPC(18:0)), 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine
(LPC(18:1)), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE(16:0/
18:1)), 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine
(PC(18:0p/22:6)) and 1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/18:2)), 1-(9Z-
octadecenoyl)-sn-glycero-3-phosphoethanolamine (LPE(18:1)), N-(9Z-octade-
cenoyl)-sphinganine (Cer(d18:0/18:1(9Z))), 1-hexadecyl-2-(9Z-octadecenoyl)-
sn-glycero-3-phosphoethanolamine (PE(16:0/18:1)) from Avanti Polar Lipids,
1-Palmitoyl-2-Hydroxy-sn-Glycero-3-Phosphatidylcholine (LPC(16:0)), 1,2,3 tri-
hexadecanoalglycerol (TG(16:0/16:0/16:0)), 1,2,3-trioctadecanoylglycerol
(TG(18:0/18:0/18:)) and 3β-hydroxy-5-cholestene-3-stearate (ChoE(18:0)), 3β-
Hydroxy-5-cholestene-3-linoleate (ChoE(18:2)) from Larodan, were prepared
to the following concentration levels: 100, 500, 1000, 1500, 2000 and
2500 ng/mL (in CHCl3:MeOH, 2:1, v/v) including 1250 ng/mL of each internal
standard. For unknown lipids, the results are given as normalized peak areas,
after normalization with the closest eluting internal standard.

Analysis of polar metabolites. 40 µl of serum sample was mixed with 90 µl
of cold MeOH/H2O (1:1, v/v) containing the internal standard mixture
(Valine-d8, Glutamic acid-d5, Succinic acid-d4, Heptadecanoic acid, Lactic
acid-d3, Citric acid-d4. 3-Hydroxybutyric acid-d4, Arginine-d7, Tryptophan-
d5, Glutamine-d5, each at at c= 1 µgmL−1 and 1-D4-CA,1-D4-CDCA,1-D4-
DCA,1-D4-GCA,1-D4-GCDCA,1-D4-GLCA,1-D4-GUDCA,1-D4-LCA,1-D4-TCA,
1-D4-UDCA, each at 0.2 1 µgmL−1) for protein precipitation. The tube was
vortexed and ultrasonicated for 3 min, followed by centrifugation
(10000 rpm, 5 min). After centrifuging, 90 µl of the upper layer of the
solution was transferred to the LC vial and evaporated under the nitrogen
gas to dryness. After drying, the sample was reconstituted into 60 µl of
MeOH: H2O (70:30).
Analyses were performed on an Agilent 1290 Infinity LC system coupled

with 6545 QTOFMS interfaced with a dual jet stream electrospray (dual ESI)
ion source (Agilent Technologies; Santa Clara, CA, USA) was used for the
analysis. Aliquots of 10 μL of samples were injected into the Acquity UPLC
BEH C18 2.1 mm × 100mm, 1.7-μm column (Waters Corporation, Wexford,
Ireland), fitted with a C18 precolumn (Waters Corporation, Wexford,
Ireland). The mobile phases consisted of (A) 2 mM NH4Ac in H2O: MeOH
(7:3) and (B) 2 mM NH4Ac in MeOH. The flow rate was set at 0.4 mLmin−1

with the elution gradient as follows: 0-1.5 min, mobile phase B was
increased from 5% to 30%; 1.5–4.5 min, mobile phase B increased to 70%;
4.5–7.5 min, mobile phase B increased to 100% and held for 5.5 min. A
post-time of 5 min was used to regain the initial conditions for the next
analysis. The total run time per sample was 20min. The dual ESI ionization
source settings were as follows: capillary voltage was 4.5 kV, nozzle voltage
1500 V, N2 pressure in the nebulized was 21 psi and the N2 flow rate and
temperature as sheath gas was 11 Lmin−1 and 379 °C, respectively. In order
to obtain accurate mass spectra in MS scan, the m/z range was set to 100-
1700 in negative ion mode. MassHunter B.06.01 software (Agilent
Technologies; Santa Clara, CA, USA) was used for all data acquisition.
MS data processing was performed using the same parameters as in

lipidomic analysis.
Quantitation was done using 6-point calibration (PFOA c= 3.75–120 ng/mL,

bile acids c= 20–640 ng/mL, polar metabolites c= 0.1 to 80 μg/mL).
Quantification of other bile acids was done using the following compounds:
chenodeoxycholic acid (CDCA), cholic acid (CA), deoxycholic acid (DCA),
glycochenodeoxycholic acid (GCDCA), glycocholic acid (GCA), glycodehydro-
cholic acid (GDCA), glycodeoxycholic acid (GDCA), glycohyocholic acid
(GHCA), glycohyodeoxycholic acid (GHDCA), glycolitocholic acid (GLCA),
glycoursodeoxycholic acid (GUDCA), hyocholic acid (HCA), hyodeoxycholic
acid (HDCA), litocholic acid (LCA), alpha-muricholic acid (αMCA), tauro-alpha-
muricholic acid (T-α-MCA), tauro-beta-muricholic acid(T-β-MCA), taurocheno-
deoxycholic acid (TCDCA), taurocholic acid (TCA), taurodehydrocholic acid
(THCA), taurodeoxycholic acid (TDCA), taurohyodeoxycholic acid (THDCA),
taurolitocholic acid (TLCA), tauro-omega-muricholic acid (TωMCA) and
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tauroursodeoxycholic acid (TUDCA) and polar metabolites was done using
alanine, citric acid, fumaric acid, glutamic acid, glycine, lactic acid, malic acid,
2-hydroxybutyric acid, 3-hydroxybutyric acid, linoleic acid, oleic acid, palmitic
acid, stearic acid, cholesterol, fructose, glutamine, indole-3-propionic acid,
isoleucine, leucine, proline, succinic acid, valine, asparagine, aspartic acid,
arachidonic acid, glycerol-3-phosphate, lysine, methionine, ornithine, pheny-
lalanine, serine and threonine. For other compounds detected, the results are
given as normalized peak areas, after normalization with the closest eluting
internal standard.

QC/QA. Quality control was accomplished both for lipidomics, polar
metabolites and PFAS analysis by including blanks, pure standard samples,
extracted standard samples, pooled quality control samples, and standard
reference plasma samples (NIST SRM 1950). The pooled sample was
prepared by taking an aliqout (10 µl) of each extract, separately for
lipidomic and polar metabolite methods, then pooling them, and
aliquoting the pool into separate vials. In lipidomic and metabolomic
analyses, lipids that had >30% RSD in the pooled QC samples (an equal
aliquot of each sample pooled together) or that were present at high
concentrations in the extracted blank samples (ratio between samples to
blanks < 5) were excluded from the data analyses.

Statistical analysis
Data pre-processing and clustering. In this study, all data analyses were
conducted using the R statistical programming language (version 4.1.2)
(https://www.r-project.org/). The exposure datasets were pre-processed by
log2 transformation and scaling to zero mean and unit variance (auto-
scaled). For contaminant exposure analyses, individual contaminant and
cluster-level analyses were performed. To cluster the contaminant data, we
utilized the ‘mclust’ R package (version 5.4.10) for model-based clustering,
selecting the model type and the number of clusters based on the highest
Bayesian Information Criterion (BIC). To better understand the impact of
exposure, we also incorporated lipidomics and metabolomics data from
our previous study [39], which included eight lipid clusters (LCs) and
twelve polar metabolite clusters (PCs), along with their individual features
(Supplementary Table 1).

Demographic data and covariates. In terms of demographic data and
covariates, the median age at the time of diagnosis for subjects who later
developed autoimmune diseases was 15 years. We obtained information
on birthweight, maternal age, gestational age, and BMI from the
questionnaire. We have also data on lifestyle of the mothers and
socioeconomic factors from both parents. We utilized birthweight and
gestational age to calculate birthweight for gestational age (BWGA) Z-
score, utilizing internationally validated infant growth charts developed by
Fenton [46, 47].

Correlation and partial correlation analysis. Pairwise Spearman’s correla-
tion between contaminants, lipid clusters (LCs), Polar metabolite clusters
(PCs), and demographic variables (Z-score, Maternal age, BMI) was
calculated and visualized using ‘corrplot’ R package (version 0.92). Two
correlation plots were generated separately for control and cases. The
correlation between variables visualised in the form of a matrix plot refers
to positive and negative correlations and the strength of the association is
referred to by the size of the dot or filled circles.
The Debiased Sparse Partial Correlation algorithm (DSPC) [48] was used

to estimate partial correlation networks and visualized in the form of a
chord diagram using ‘circlize’, R package (version 0.4.15) with edge ranges
between ±0.14 to 1.0 and showing only correlations across contaminants,
LCs, PCs, and demographic variables.

Univariate statistical analysis. To understand the impact of contaminant
exposure levels on cord serum metabolome, the subjects were assigned to
four quartiles based on the exposure levels. A two-way analysis of variance
(ANOVA) test was performed followed by post-hoc Tukey’s test by using
quartiles (Q1 to Q4) and subjects (cases and control) as factor variables.
ANOVA test helps to identify any significant changes in the lipid or
metabolite clusters and post-hoc Tukey’s test helps to identify the specific
quartiles between which significant changes are observed.

Regression and classification analysis. Predictive logistic ridge regression
(LRR) was performed to investigate the impact of individual contami-
nants on the stratification of autoimmune cases and controls. We have
adapted the L2 regularization strategy to avoid multicollinearity among

highly correlated predictors. Regularized regression modelling was
performed using the ‘glmnet’ package in R (version 4.1-4). The hyper-
parameter λminimum was determined by 10-fold cross-validation using
the ‘cv.glmnet’ function from ‘glmnet’. The models were adjusted for Z-
score, Maternal age and BMI. The accuracy of prediction was determined
by AUCs, where the mean AUC of the model was estimated by
bootstrapping, by resampling the exposure dataset into training (80%)
and testing (20%) 10,000 times. All LRR models with a threshold of
AUC > 0.60 were considered. Downsampling was performed to address
the class imbalance problem (cases, n= 62, controls, n > 62). The ‘caret’
package (version 4.1.3) was used for the partition of data and the best
models (based on mean AUCs) were assessed using Receiver Operating
Characterisitic (ROC) curves using the ‘ROCR’ package. Additionally, we
have performed a stepwise recursive feature elimination scheme to
identify the minimum number of predictors that are needed to maximize
the outcome.
To investigate the effect of contaminant exposure on the cord blood

metabolome, we employed linear regression with L2 regularization (LR),
using individual contaminant concentrations as predictors and the
concentrations of significantly altered cord blood lipid or polar
metabolites (and their cluster) as the response variable. Note that we
conducted linear regression with L2 regularization for cases and controls
together. The hyper-parameter λminimum, which corresponds to the
minimum cross-validation error, was selected through 10-fold cross-
validation. We partitioned the data and performed resampling (10,000
iterations) as described earlier. The mean R square was used to estimate
the accuracy of prediction and the significant impact of contaminant
exposure on the cord blood metabolome.
Additionally, we determined the ranks of the predictors using LR and

LRR modelling. For the LRR models, the ranks of the predictors were
estimated based on the unit absolute differences in the odds ratio, while
for the LR models, the ranks were based on the ridge coefficients
normalized with the maximum value.

Pathway analysis. Pathway enrichment analysis comparing cases versus
controls for Deoxynivalenol (DON) impact polar metabolites was
performed using the MetaboAnalyst 5.0 web platform with the Functional
Analysis (MS Peaks) module [49]. The input data for the pathway analysis
consisted of complete high-resolution LC-MS spectral peak data obtained
in negative ionization mode with a mass tolerance of 10 ppm. Linear
regression analysis was performed to estimate the association between
DON and polar metabolites while adjusting for Z-score, Maternal age, and
BMI. The whole input peak list with FDR-corrected p-values and T-score
was used for the pathway analysis. Overrepresented pathways were
estimated against the background human scale metabolic model MNF
(from MetaboAnalyst Mummichog package) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for Homo sapiens to determine the
relative significance of the identified pathways [50]. The MetaboAnalyst 5.0
metabolomics pathway analysis (MetPA) tool [51] was used to calculate the
Pathway Impact Scores [49, 52].

RESULTS
Metabolomic analysis of the cord blood
Figure 1 summarizes the integration of exposomics and
metabolomics workflows in the ABIS cohort. Cord serum
samples were analyzed for a total of 545 lipids and 3417 polar
metabolites, which were further grouped into 8 lipid clusters
and 12 polar metabolite clusters, respectively. We previously
found significant associations between the metabolite clusters
and demographic variables or clinical parameters such as
gestational age, maternal age, and birth weight [39]. To account
for these associations, we used the Z-score as calculated from
birth weight, gestational age, and maternal BMI as covariates in
our analysis.

Levels of contaminants in the cord blood
A total of 20 contaminants, including several PFAS compounds, were
detected in cord blood samples from both control and case groups
(Supplementary Table 2). Differences (p < 0.05) in concentration
levels between control and case groups were observed for
Perfluorooctanoic acid Branched 2, Environmental Contaminant 1,
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Perfluorooctanoic acid Linear 1, Perfluorooctanoic acid Linear 2 and
Methylparaben (Fig. 2). The environmental contaminant 1 has been
putatively identified as mOPFLCA n= 2, based on Norman suspect
screening list, however, due to the lack of authentic standard, we
were not able to verify the identity. At the individual disease level,
Environmental Contaminant 1, Perfluorooctanoic acid Linear 2, and
Perfluorooctanoic acid Branched 2 showed differences (p < 0.05) in
concentration levels between control and individual disease groups
(Supplementary Fig. 1). The contaminants were reduced to four

clusters (CC1-CC4) consisting of eight contaminants, including
Bisphenol S, Deoxynivalenol, Monobutyl phthalate, and
a-Zearalanol in CC1; Ethylparaben, Methylparaben, and Propylpar-
aben in CC2; Perfluorohexanesulfonic acid (PFHxS) and Perfluor-
ohexanesulfonic acid Branched (PFHxSBr) in CC3; and seven PFAS
and their fragments as part of CC4 (Supplementary Table 2). The
clustering was guided by the Bayesian Information Criterion (BIC),
selecting models with the highest BICs to evaluate performance and
guide the clustering process.
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Fig. 2 Box plots that illustrate the levels of selected contaminants in control and cases. The violin plots (A–F) on top of the box plots depict
the distribution of the selected contaminants (log2 intensities). To test the mean difference between the control and cases, we conducted a
Wilcoxon test. The p-values are provided to indicate the significance levels for the mean differences between the two groups for each
contaminant (A–F). Specifically, p < 0.05 indicates statistical significance, and p < 0.1 suggests a trend toward significance. Overall, these results
help to identify specific contaminants that may contribute to the altered cord serum metabolome in cases.

BA

Fig. 3 Correlations between contaminant exposure, metabolite clusters, and demographic data. Pairwise Spearman correlations were
used to calculate the correlation coefficients between all cluster variables, contaminants, and demographic variables in the ABIS
cohort separately for (A) controls and (B) cases. Positive and negative correlations are denoted by blue and red colours, respectively. The size
of the dot in each cell corresponds to the strength of the pairwise correlation. To improve visualization, we only show correlations between
+/- 0.20 to 1.0 in the plots. Overall, these correlation plots provide a comprehensive overview of the complex relationships between
environmental contaminants, metabolites, and demographic factors in the ABIS cohort.
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Exposure level of contaminants as a predictor for immune-
mediated diseases
We employed predictive logistic ridge regression (LRR) models to
stratify controls and cases based on their contaminant concentra-
tions. The models were fitted using all predictors or by using the
stepwise recursive feature elimination (RFE) method. The mean
area under the curve (AUC) values for the models were 0.65 (95%
CI 0.63-0.67) when using all predictors and 0.67 (95% CI 0.66-0.68)
when using the stepwise RFE method (Supplementary Fig. 2). Our
results showed that the contaminant concentration levels have a
modest potential to differentiate controls from autoimmune
diseases, as indicated by the mean AUC values (Supplementary
Fig. 2). The ranks of individual contaminants (predictors) for
separating controls and cases were estimated based on the unit
absolute difference in odds ratios (Supplementary Fig. 2A).

Associations between contaminants and cord serum
metabolic profiles
We found significant associations between contaminants and cord
serum metabolic profiles (Fig. 3). Specifically, more associations
were observed between PFAS exposures and metabolic profiles in
cases than in controls. Maternal age was positively associated with
metabolite cluster PC1 in cases but not in controls (Fig. 3). We also
performed partial correlation network analysis to identify non-
spurious associations and Fig. 4 shows the marked associations
between contaminants and cord serum metabolic profiles along
with demographic variables. Notably, the controls exhibit stronger
associations between contaminants and cord serum metabolic
profiles compared to cases (Fig. 4). In the case group (Fig. 4B), the
covariates Z-score, maternal age, and BMI showed a stronger
association with exposure and cord serum metabolic profiles

compared to the control group (Fig. 4A). The mycotoxins including
deoxynivalenol were found to be associated with PC2 (phospha-
tidylcholines) and PC10 (unknowns), while a-zearalanol was
associated with PC1 (lysophosphatidylcholines, sphingomyelins,
and ceramides) (Fig. 4).

Impact of contaminant exposure on cord serum metabolites
associated with immune-mediated diseases
The samples were stratified into quartiles based on their level of
exposure to contaminants, and the impact of exposure on
metabolite levels was assessed at both individual contaminant
levels and cluster levels (CC1-CC4) (Supplementary Tables 3–6).
The polar metabolite clusters displayed more significant mean
differences between the highest (Q4) and lowest (Q1) quartiles, as
shown in Supplementary Tables 5,6. In CC1, significant mean
differences between Q4 and Q1 were observed for LC3, LC4, and
LC7 at the lipid cluster level (Supplementary Table 4). In CC3,
which includes perfluorohexanesulfonic acid (PFHxS) and
branched (PFHxSBr), significant mean differences between the
highest and lowest quartiles were observed for LC5 and LC6
(Supplementary Table 4 and Fig. 5H).
Linear ridge regression (LR) was performed to determine the

quantitative effect of contaminant concentration levels on cord
serummetabolic profiles. The results showed that polar metabolites
in cord serumweremore highly impacted by contaminant exposure
than lipid levels. Specifically, six polar metabolite clusters, PC2
(R2= 0.72), PC6 (R2= 0.53), PC4 (R2= 0.52), PC1 (R2= 0.48), PC10
(R2= 0.48), and PC11 (R2= 0.32), showed significant associations
with exposure levels (Fig. 5 and Fig. S3). At the individual metabolite
level, amino acids such as tryptophan (Fig. 5C), Serine of PC2, and
3-Chlorothieno [2,3-b]thiophene-2-carbonyl chloride of PC11

Fig. 4 Partial correlation networks swhowing associations between contaminant exposure, metabolite clusters, and demographic data.
The networks are shown separately for (A) controls and (B) cases. To filter out spurious or indirect correlations between variables, we used the
Debiased Sparse Partial Correlation (DSPC) algorithm [48] to only show direct correlations. We used a conservative cut-off between +/− 0.14
to 1.0 to visualize the correlations and project only correlations across groups (Contaminants, metabolite clusters, and covariates/
demographic data). Positive and negative correlations are denoted by blue and red lines, respectively. Overall, this partial correlation network
provides a more detailed view of the complex relationships between environmental contaminants, metabolites, and demographic factors in
the ABIS cohort.
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showed a significant impact (Fig. 5F). According to the ranks of the
predictors (contaminants), deoxynivalenol (DON) and Bisphenol S
were the top linear predictors of cord serum metabolites and
clusters PC2 and PC11 (Fig. 5A–F).
Although the contaminants from clusters CC1 and CC3 showed a

significant association between quartiles (Q4 vs. Q1) and lipid cluster
levels LC3, LC4, LC5, LC6, and LC7, their strength of association based
on LR models was comparatively weaker (Fig. 5G–I and Supplemen-
tary Fig. 3). For example, the lipid cluster LC6, which mainly
comprises triglycerides containing monounsaturated fatty acid
(MUFA) and polyunsaturated fatty acids (PUFA), showed a weaker
association (R2= 0.04) with contaminant exposures (Fig. 5G–I).

Pathway analysis of deoxynivalenol exposure
Metabolic pathway enrichment analysis was performed to
evaluate the impact of DON on polar metabolites in both control
and case groups separately. DON was found to be the top
predictor that impacted polar metabolite clusters PC2, PC4, PC10,
and PC11, as shown in Fig. 5 and Supplementary Fig. 3. Both
Mummichog and GeneSet Enrichment Analysis (GSEA) algorithms
were utilized using MetaboAnalyst 5.0 [49, 50]. Based on the
pathways identified by the impact of DON exposure, both control
and case groups showed common and specific metabolic
pathways, as presented in Supplementary Tables 7–10.

The MFN pathway map revealed that DON exposure was
associated with ‘Tyrosine and Tryptophan metabolism’ in the
control group but not in cases. Also ‘Glutathione Metabolism’,
‘Alanine and Aspartate Metabolism’, and ‘Glycerophospholipid
metabolism’ were found to be associated with exposure to DON in
cases, but not in controls (Fig. 6A, C and E; Supplementary
Tables 7 and 9). Similarly, based on the KEGG pathway maps,
‘Aminoacyl-tRNA biosynthesis’ and ‘Glycine, serine, and threonine
metabolism’ were common among control and case groups, while
several other metabolic pathways were specific to each group
(Fig. 6B, D, and F, Supplementary Tables 8 and 10). In summary,
the pathway enrichment analysis provided insights into the
metabolic pathways affected by DON exposure in both control
and case groups. The results highlight the differences in the
impacted pathways between the two groups based on the
exposure to DON.

DISCUSSION
We performed integrated exposomics and metabolomics to
detect the levels of exposure to contaminants and metabolite
levels in cord serum. This comprehensive approach allowed us to
assess the individual associations of environmental exposures
and metabolic profiles on autoimmune diseases in the ABIS
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Fig. 5 Impact of environmental contaminants on cord serum metabolites. Horizontal bar plots (A, D, G) and (C, F, I) display the ranks of
contaminants as predictors of metabolite clusters (PC2, PC11, and LC6) and individual metabolites (Tryptophan, 3-Chlorothieno [2,3-b]
thiophene-2-carbonyl chloride, and TG(16:0/18:2/18:2)), respectively. The potential impact of contaminants on metabolite clusters or
individual metabolites is determined by their rank at the top of the bar plot. The ranks are based on their absolute normalized (ridge)
regression coefficients. Violin plots (B, E, H) show the levels of metabolites (clusters) associated with levels of exposure to contaminants from
contaminants clusters 1 (CC1) and 3 (CC3). The violin plot represents the density of the sample within each quartile, and their distribution is
represented using a box plot at the centre. Two-way ANOVA followed by post-hoc Tukey´s HSD test was used to compare the mean difference
between levels of metabolites (along quartiles).

B.S. Karthikeyan et al.

7

Journal of Exposure Science & Environmental Epidemiology



FE

MFN

9 611

Controls Cases

Aminosugars metabolism
Beta-Alanine metabolism
Butanoate metabolism
Glutamate metabolism
Glycine, serine, alanine and threonine metabolism
Pyrimidine metabolism
Pyruvate Metabolism
Urea cycle/amino group metabolism
Valine, leucine and isoleucine degradation

Caffeine metabolism
Fructose and mannose metabolism
Glycosphingolipid metabolism
Hexose phosphorylation
Histidine metabolism
Methionine and cysteine metabolism
Propanoate metabolism
Selenoamino acid metabolism
Sialic acid metabolism
Tryptophan metabolism
Tyrosine metabolism

Alanine and Aspartate Metabolism
Arginine and Proline Metabolism
Aspartate and asparagine metabolism
Carbon fixation
Glutathione Metabolism
Glycerophospholipid metabolism

KEGG

2 67

Controls Cases

Amino sugar and nucleotide sugar metabolism
Fructose and mannose metabolism
Phenylalanine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Tyrosine metabolism
Valine, leucine and isoleucine biosynthesis
Valine, leucine and isoleucine degradation

Alanine, aspartate and glutamate metabolism
Arginine and proline metabolism
Glycolysis or Gluconeogenesis
Glyoxylate and dicarboxylate metabolism
Pantothenate and CoA biosynthesis
Phosphonate and phosphinate metabolism

Aminoacyl-tRNA biosynthesis
Glycine, serine and threonine metabolism

A

SEGSEAA -log -log10(p)AA

M
i

h
l

10
(

)
M

um
m

ic
ho

g 
-lo

g1
0(

p) no group metabolism/aminUrea cycle/yy

asparagine metabolismand aAspartate a

V and isoleucine degradationine aaline, leucleu leuVV

and threonine metabolismanine Glycine, serine, ala a ane, ne, 

Fructose and mannose metabolism etabolismne mePyrimidinmidimidmidmid

T abolismmetayrosine osineosineTT
Tryptophan metabolismmetameta B

GSEA -log10(p)A

M
um

m
ic

ho
g 

-lo
g1

0(
p)

Biosynnntheesis of unsaturated fatty acids

Aminoacyl-tRNNNAAA osynthesisbibbAAA

T abolismayrosine metamemeTT

Propanoate metabolisateate sm

metabolismPhenylalanine mninnin

V dationoleucine degradaline, leucine and isddnd nd VV

monine metabolisoGlycine, serine and threod thred thre

hreonine metabolismand th

d threonine metabolism

C

Glycine, serine, alanine a

SEGSEAA -log-log10(p)AA

M
i

h
l

10
(

)
M

um
m

ic
ho

g 
-lo

g1
0(

p)

Carbon fn fn ffixationffi

Beta-Alanine metabolismninenine

Glutathione Metabolismhionhion
Aminosugars metabolismugarugar

p metabolismgroupUrea cycle/amino gmino mino 

olismetaboGlutamate mematmat

Alanine andne ane aA rtate MetabolismAsparA

agine metabolismsparaAspartate and asnd nd 

D

Glycine, serine and

GSEA -log10(p)A

M
um

m
ic

ho
g 

-lo
g1

0(
p)

Cysteine and methionine metabolismandand

Aminoacyl-tRNRNtRNAAA biosynthesis A

lismPhosphonate and phosphinate metabolnd and 

Pantothenate and CoCoCoAAA biosynthesisA

tabolismGlyoxylate and dicarboxylate metdicdic

ne metabolismArginine and prolinpropro

Fig. 6 Pathway enrichment analysis comparing cases versus controls for Deoxynivalenol (DON) impact polar metabolites. The scatter
plots depict the p-values using two different pathway maps: MFN pathway maps on the left panels and KEGG pathway maps on the right
panels. The pathway analysis methods Mummichog and GSEA are used on the y-axis and x-axis, respectively, for both control (A, B) and cases
(C, D). The size of the circle on each scatter plot represents the pathway impact value. The Venn diagram shows the common and unique
pathways in controls and cases (E, F). For more detailed information, such as the number of metabolites in the pathways (total number/hits/
significant hits) and p-values, please refer to the supplementary information.

B.S. Karthikeyan et al.

8

Journal of Exposure Science & Environmental Epidemiology



cohort. In our previous study we found similarities in metabolic
profiles across different autoimmune diseases at birth [39]. In
order to avoid class imbalance problems, here we pooled all
individual diseases together. We detected 20 contaminants,
encompassing several PFAS compounds, Bisphenol S, and
mycotoxins like Deoxynivalenol (DON), in cord blood samples
from both control and case groups. Previous studies, including
our own, have reported detectable levels of PFAS compounds
[18, 26], Bisphenol S exposure [53], and the presence of
mycotoxins, including Deoxynivalenol (DON), in cord blood
samples [54]. These findings provide a backdrop for our
investigation into the associations between these contaminants
and autoimmune diseases in the ABIS cohort. We were able to
demonstrate significant differences in the exposure levels of
certain contaminants, such as Perfluorooctanoic acid Branched 2,
Environmental Contaminant 1, Perfluorooctanoic acid Linear 1,
Perfluorooctanoic acid Linear 2, and Methylparaben, in cord
blood between the control and case groups. However, it is
important to note that while these differences were statistically
significant, the effect sizes were relatively modest. This suggests
that while contaminants do play a role in distinguishing between
controls and autoimmune diseases, they are unlikely to be the
sole risk factors. Various factors including genetics, environmental
triggers, and lifestyle factors, and their mutual interactions,
contribute to the development of autoimmune diseases
[14–21, 55].
Our study revealed differences in exposure and metabolite

profiles between individuals who later developed autoimmune
diseases and controls, particularly in relation to Z-score, mothers’
age, and BMI. This suggests that there may be differences in
maternal factors between the two groups even at birth. We also
observed that high levels of exposure to environmental con-
taminants were associated with changes in amino acid and free
fatty acid profiles in the cord blood metabolome. Although we
previously found a significant impact on lipid profiles, particularly
triacylglycerols, the strength of association is weaker compared to
the effect on polar metabolites [39]. Among the 20 contaminants
measured in our study, DON, Bisphenol S, and some branched
PFAS compounds are the primary predictors of changes in cord
serum metabolic profiles. While the associations between PFAS
exposure and their marked effect on metabolism leading to
autoimmune diseases have been well documented in previous
studies [18, 26, 56, 57], the exposure to DON and BPS and their
impact on autoimmune diseases is less studied.
While our study detected Bisphenol S (BPS) and not Bisphenol

A (BPA) due to this compound being present also in our blank
samples, it’s noteworthy that BPA, a common chemical found in
plastics, has been associated with alterations in amino acid
metabolism [58]. BPA has been linked to changes in phenylala-
nine, tryptophan, tyrosine, lysine, and arginine metabolism, with
a particular impact on female infants [59]. In the case of BPS, it
was shown to have sex- and diet-dependent effects on the
development of type 1 diabetes (T1D) in non-obese diabetic
(NOD) mice. Female mice exposed to BPS on a soy-based diet
exhibited delayed T1D development, while males showed
increased insulin resistance [60]. These findings suggest that
both BPA and BPS can influence metabolism and immune
responses, potentially contributing to autoimmune diseases like
T1D, although there is less evidence regarding the effect of BPS
in humans.
Deoxynivalenol (DON) exposure in pregnant women has been

reported in various studies. In the UK, pregnant women from
diverse backgrounds showed detectable urinary DON levels, with
South Asian women having higher exposure, primarily from bread
consumption [61]. Similarly, in Norway, DON, a common
mycotoxin in cereals, was found in various cereal-based foods,
potentially affecting the immune system, particularly in infants
and young children [62]. In pregnant Egyptian women, DON co-

occurred with other mycotoxins, raising concerns about maternal
and fetal health [63].
These findings emphasize the importance of assessing DON

exposure in pregnant women and its potential health implications.
DON exposure, prevalent in grains, adversely affects the immune
system in both humans and animals and has been linked to
alterations in gut microbiota [64]. This immunotoxicity induced by
DON involves mechanisms such as MAPK activation, ER stress, and
mitochondrial signaling pathways [64].
To study further the potential mechanisms underlying these

associations, we conducted a pathway analysis of DON exposure
on polar metabolites within both control and case groups. This
analysis revealed that DON had distinct impacts on metabolic
pathways in these groups. In the control group, DON exposure
was associated with alterations in multiple amino acid metabolic
pathways, as well as with fructose and mannose metabolism and
urea cycle. Amino acids are also linked with immune cell functions,
as they are key nutrients for immune cells. Alteration of
tryptophan metabolism has been linked with inflammatory and
immune responses, with tryptophan catabolism being recognized
as an important player in inflammation and immune
response [65, 66]. Our results also agree with studies in animal
models, which have demonstrated changes in tryptophan
metabolism following exposure to DON [67]. In addition, low
circulating concentrations of tryptophan have been observed in
infectious and autoimmune diseases and also in disorders that
involve cellular (Th1-type) immune activation [68]. We have also
earlier shown in the same cohorts as studied here that
autoimmunity was associated with tryptophan metabolism [39].
Also in the case group, we observed associations in multiple
amino acid metabolic pathways, urea cycle, and sugar metabolism
as well as on other pathways that suggests disruptions in
antioxidant defense systems and lipid metabolism.
Of the affected pathways, glutathione has been suggested to be

a primer for T-cell metabolism for inflammation [69] while T-cell
activation has shown to be dependent on extracellular alanine
[70]. Also, glycerophospholipid metabolism has been indicated to
play a significant role in systemic immune and low-grade
inflammatory states [71].
These findings align with previous research indicating that DON

can induce oxidative stress by reducing antioxidant enzyme
activity and enhancing lipid peroxidation [72]. The marked
association between DON and phosphatidylcholines in our study
suggests a potential link between mycotoxin exposure and
alterations in lipid metabolism, particularly in the context of
phosphatidylcholines. This finding is noteworthy, as specific
phosphatidylcholines were previously identified as persistently
down-regulated in children who later progressed to islet
autoimmunity [37] and clinical T1D [15]. Thus, the oxidative stress
response and its impact on lipid metabolism, triggered by DON
exposure, may play a pivotal role in the pathogenesis of
autoimmune diseases, warranting further investigation.
These differential effects of DON exposure on metabolic

pathways between control and case groups highlight the intricate
relationship between environmental exposures, metabolism, and
immune dysregulation in the context of autoimmune diseases.
The difference between the two groups also suggest a complex
gene-environment interaction that could be underlying the
observed changes in responses. While our study contributes to
our understanding of the metabolic consequences of DON
exposure, it’s essential to consider these findings within the
broader context of various factors, including genetics, environ-
mental triggers, and lifestyle factors, which collectively contribute
to the development of autoimmune diseases. Understanding
these effects is crucial when assessing DON exposure during
pregnancy and its potential health consequences. In this study,
the median age of diagnosis of autoimmune diseases was higher
compared to previous studies in genetically high-risk cohorts
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[14–16]. Despite some common metabolic patterns [39], there
were differences and limitations to consider. One important
limitation of our study was the small sample size within each
disease group, which restricted our analysis. Another limitation of
our study was the lack of maternal exposure and longitudinal
exposure data at different time points between birth and the
onset of autoimmune diseases, which could explain their age-
dependent progression.
Our previous studies in T1D [26] and CD [18] cohorts have

mainly focused on the associations of PFAS exposure with the
disease risk. Here we detected the levels of other contaminants
such as Bisphenol S and some mycotoxins including DON and a-
Zearalanol, which potentially show the differences in exposures.
Mycotoxins are common contaminants of cereals and grains, and
exposure to them is also associated with autoimmune disorders
[64, 73–75]. This emphasizes the need for caution and control over
mycotoxin exposure, particularly during pregnancy and critical
developmental stages.
Altogether, our results show that high prenatal exposure to

environmental contaminants associated with altered cord serum
metabolite levels and may result in the progression of auto-
immune diseases in the ABIS cohort. Other factors such as Z-score,
maternal age, and BMI are associated with contaminant exposure
levels. Mechanistic studies are required to elucidate pathways of
disease progression upon exposure.
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