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BACKGROUND: Personal exposure to fine particulate matter (PM2.5) is impacted by different sources each with different chemical
composition. Determining these sources is important for reducing personal exposure and its health risks especially during
pregnancy.
OBJECTIVE: Identify main sources and their contributions to the personal PM2.5 exposure in 213 women in the 3rd trimester of
pregnancy in Los Angeles, CA.
METHODS:We measured 48-hr integrated personal PM2.5 exposure and analyzed filters for PM2.5 mass, elemental composition, and
optical carbon fractions. We used the EPA Positive Matrix Factorization (PMF) model to resolve and quantify the major sources of
personal PM2.5 exposure. We then investigated bivariate relationships between sources, time-activity patterns, and environmental
exposures in activity spaces and residential neighborhoods to further understand sources.
RESULTS: Mean personal PM2.5 mass concentration was 22.3 (SD= 16.6) μg/m3. Twenty-five species and PM2.5 mass were used in
PMF with a final R2 of 0.48. We identified six sources (with major species in profiles and % contribution to PM2.5 mass) as follows:
secondhand smoking (SHS) (brown carbon, environmental tobacco smoke; 65.3%), fuel oil (nickel, vanadium; 11.7%), crustal
(aluminum, calcium, silicon; 11.5%), fresh sea salt (sodium, chlorine; 4.7%), aged sea salt (sodium, magnesium, sulfur; 4.3%), and
traffic (black carbon, zinc; 2.6%). SHS was significantly greater in apartments compared to houses. Crustal source was correlated
with more occupants in the household. Aged sea salt increased with temperature and outdoor ozone, while fresh sea salt was
highest on days with westerly winds from the Pacific Ocean. Traffic was positively correlated with ambient NO2 and traffic-related
NOx at residence. Overall, 76.8% of personal PM2.5 mass came from indoor or personal compared to outdoor sources.
IMPACT: We conducted source apportionment of personal PM2.5 samples in pregnancy in Los Angeles, CA. Among identified
sources, secondhand smoking contributed the most to the personal exposure. In addition, traffic, crustal, fuel oil, fresh and aged sea
salt sources were also identified as main sources. Traffic sources contained markers of combustion and non-exhaust wear emissions.
Crustal source was correlated with more occupants in the household. Aged sea salt source increased with temperature and outdoor
ozone and fresh sea salt source was highest on days with westerly winds from the Pacific Ocean.
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INTRODUCTION
Personal exposure to particulate matter with aerodynamic
diameter <2.5 µm (PM2.5) is impacted by indoor, outdoor, and
personal activity-related (i.e., behaviors) sources in various
microenvironments, spaces, and neighborhoods that individuals
typically encounter [1, 2]. Prenatal exposure to PM2.5 specifically is
associated with adverse maternal and fetal health outcomes [3–5].
Exposure in the 3rd trimester of pregnancy, when most fetal
weight gain occurs is thought to be associated with low birth
weight and impaired growth [6–8]. The toxicity of PM2.5 and its

subsequent impact on health is driven by its chemical composi-
tion and main sources contributing to it [8–10]. Identifying and
quantifying the main sources of personal PM2.5 exposure can shed
light on particular mixtures that might pose a greater health risk
and might otherwise be missed by solely investigating total PM2.5

mass concentration as a whole. This is particularly important in
environmental health disparities contexts and for specific vulner-
able populations such as pregnant women for whom meaningful
recommendations to reduce exposures and health risks are
needed [11, 12].
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Main sources of PM exposure are generally resolved using
source- and receptor-oriented modeling approaches [13, 14].
Based on the mass balance principle [15], receptor-oriented
approaches utilize speciated measurements at receptors (i.e.,
receiving) to identify and quantify major sources (or source
groups) impacting that location or individual [16, 17]. One of the
most commonly used receptor models is the Positive Matrix
Factorization Model (PMF) which solves for sources and their
chemical profiles without pre-assuming what they are [18–20].
Several studies have conducted source apportionment in

outdoor and indoor environments and investigated their health
impacts [3, 21, 22]. For example, vehicular emissions, wood smoke,
natural gas combustion, ship emissions, secondary aerosols, fresh
and aged sea salt, and soil/road dust sources were resolved in
outdoor PM (various size ranges) in Los Angeles, CA communities
[23, 24]. Hasheminassab et al. [25] found mobile sources were the
major contributor to both indoor (39 ± 21%) and outdoor
(46 ± 17%) PM2.5 mass in three retirement homes in Los Angeles,
Habre et al. [26] found cooking, cleaning, candle/incense burning,
and smoking contributed significantly to indoor PM2.5 concentra-
tions in New York City residences.
However, personal exposure to PM2.5 and its sources can be

more complex to discern for several reasons. First, while personal
monitoring (sampling air in the personal breathing zone) is
considered the gold standard approach in external individual-level
exposure assessment [27, 28], the cost and burden of conducting
these studies is still high especially during pregnancy [29, 30].
Second, individuals get exposed to PM2.5 in multiple microenvir-
onments and locations, often in close proximity to indoor sources
or while mobile, sometimes generating PM2.5 from their activities
(e.g., burning candles), and are always impacted by outdoor air
pollution that infiltrates indoors or into the personal breathing
zone [27, 28, 31, 32]. As such, disentangling sources that
contribute to personal exposure can be more challenging
compared to outdoor or indoor studies. This challenge is reflected
by the relatively small number of studies conducting source
apportionment in personal samples, most of which are collected
12 to 48 hour integrated PM samples [2, 33–35].
Of these, Özkaynak et al. [35] found that personal PM10 exposure

was much higher than outdoor and indoor PM10 concentrations in
178 nonsmoking residents in Riverside, CA, and that these explained
16% and 50% of the variation in personal exposures, respectively.
Cooking and smoking were important sources of personal exposure.
Minguillón et al. [34] found wide variation in personal PM2.5

exposures of 54 pregnant women and reported on limitations of
questionnaire data (e.g., recall error, accuracy of time and location of
travel and activities) in helping to resolve sources.
To the best of our knowledge, no studies to date have

conducted source apportionment on personal PM2.5 exposure
samples in the 3rd trimester of pregnancy. We aimed to
chemically characterize the composition of personal PM2.5 and
resolve its main sources in the MADRES (Maternal And Develop-
mental Risks from Environmental and Social Stressors) cohort in
Los Angeles, CA. To accomplish this goal, we analyzed filter-based
data from a personal monitoring sub-study in MADRES using the
United States Environmental Protection Agency (EPA) PMF model
[19]. We leveraged questionnaire data, geolocation monitoring
(GPS), and geospatial modeling of environmental exposures (in
residential neighborhoods and activity spaces) to confirm
predicted source identities and understand how their mass
contributions vary in relation to personal behaviors, indoor/
outdoor sources, and time-activity patterns.

METHODS
Study design
A total of 213 women in their 3rd trimester enrolled in the larger MADRES
cohort were recruited into this personal monitoring sub-study between

October 2016 and March 2020. MADRES is an ongoing prospective
pregnancy cohort focused on predominantly low-income, Hispanic women
and their babies residing in Los Angeles, CA. MADRES aims to address
critical gaps in understanding environmental health disparities and the
impacts of air pollution and social stressors on maternal and child health.
The details of eligibility, enrollment, and follow-up of participants are
described elsewhere [36]. Briefly, eligible participants for this sub-study
were in the 3rd trimester at the time of recruitment, ≥18 years of age, and
could speak either English or Spanish fluently. In the initial design, people
living in a household with an active smoker were excluded to reduce the
impact from smoking on personal PM2.5 exposures. However, in order to
encourage all participants to contribute to sub studies, the non-smoking
household criterion was not applied consistently throughout the study and
was eliminated by the end of 2018. Informed consent was obtained for
each participant. The University of Southern California’s Institutional
Review Board (IRB) approved the study protocol.

Data collection
The 48-hr integrated personal PM2.5 measurements were collected to
characterize the composition of personal PM2.5 and identify its main
sources in the MADRES cohort through source apportionment analysis.
Several other data sources were used from MADRES questionnaires and
measurements and from external data sources in a second follow-on
bivariate analysis to confirm source identities and understand the personal
drivers that affect the mass contribution of each source. These included
the following: questionnaires (collected at trimester 1, 2, and 3,
respectively), GPS-derived time-activity patterns and environmental
exposures within activity spaces from the personal monitoring study,
modeled residential environmental exposures, and outdoor EPA PM2.5

chemical speciation data from a central site.

Personal PM2.5 measurements. The personal PM2.5 sampling design and
protocol in the 3rd trimester is described in detail in O’Sharkey et al. [37]
and Xu et al. [38]. Briefly, personal, 48-h integrated PM2.5 measurements
were collected using a Gilian Plus Datalogging Pump (Sensidyne, Inc.)
operating on a 50% cycle at 1.8 lpm flow rate with the sampling inlet
located in the breathing zone. The pump is connected to a PM2.5 Harvard
Personal Environmental Monitor (PEM) size-selective impactor with a
37mm Teflon filter (2 µm pore size; Pall, Inc.). Participants were asked to
wear the sampling device for the entire data collection period with a few
exceptions. These included when it is unsafe to do so (e.g., driving),
showering, or sleeping, in which case they were instructed to place the
device near them in an unobstructed location.
Filters were analyzed gravimetrically to determine PM2.5 mass using an

MT5 microbalance (Mettler Toledo, Columbus, OH, USA) in a dedicated
humidity- and temperature-controlled chamber at the USC Exposure
Analytics Laboratory. Filters were then sent to RTI International (Research
Triangle Park, NC) to determine elemental composition of the following
33 species using Energy Dispersive X-Ray Fluorescence (EDXRF): barium
(Ba), calcium (Ca), chlorine (Cl), copper (Cu), iron (Fe), potassium (K),
magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), sulfur (S),
silicon (Si), titanium (Ti), zinc (Zn), aluminum (Al), bromine (Br), cobalt (Co),
phosphorus (P), lead (Pb), selenium (Se), strontium (Sr), vanadium (V),
cesium (Cs), zirconium (Zr), chromium (Cr), rubidium (Rb), arsenic (As),
indium (In), silver (Ag), antimony (Sb), tin (Sn), cerium (Ce), and cadmium
(Cd). Filters were also analyzed for concentrations of black carbon (BC),
brown carbon (BrC), and environmental tobacco smoke (ETS) using a
seven-wavelength optical transmittance integrating sphere method
[39, 40].

Questionnaires. Participants completed interviewer-administered ques-
tionnaires in trimester-specific visits as part of the larger MADRES cohort
and an exit survey after completing the 48-hr monitoring period as part
of the personal monitoring sub-study (Table S1 and S2). Data obtained
from the MADRES questionnaires include the following: demographics
(e.g., age, race, education, employment, income), housing characteristics
(e.g., type of dwelling, building age). In addition, data on the following
were available from the exit survey: time-activity patterns (e.g., time
spent indoors and outdoors, commuting), home ventilation (e.g., window
open, air conditioner use), current tobacco smoke exposure (primary and
secondhand), and presence of any significant indoor sources of PM2.5

such as cooking or candle burning [36]. Participants’ home addresses at
the 3rd trimester study timepoint were geocoded for residential exposure
assessment.
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Residential environmental exposure assessment. Daily ambient concentra-
tions of PM2.5, PM10, nitrogen dioxide (NO2), and ozone (O3) were
interpolated at the residence using inverse distance squared weighted
interpolation from US EPA Air Quality System data [36]. Daily local traffic-
related nitrogen oxides (NOx) concentrations at the residence were
estimated using the CALINE4 line source dispersion model by roadway
class [41]. Daily meteorology (temperature, precipitation, specific humidity,
relative humidity, downward shortwave radiance, wind direction and wind
speed) was assigned based on a 4 km × 4 km gridded model developed by
Abatzoglou [42]. Forty-eight-hour integrated averages were calculated
from daily measurements to correspond to the personal monitoring dates.
For wind direction, four categories were created based on the 48-hr mean
(arithmetic mean of two vector averages) as follows: 0–90° as wind blowing
from northeast (NE), 91–180° as southeast (SE), 181–270° as southwest
(SW), and 271–360° as northwest (NW), where a direction of 0° is due North
on a compass.

GPS-derived time-activity patterns and environmental exposures within
activity spaces. Smartphones with the study-developed madresGPS
Android app pre-installed and programmed were used to log participants’
geolocation (GPS and metadata) and motion sensor data continuously at
10-s intervals for the 48-hr monitoring period. Data were then analyzed to
derive time activity patterns as minutes spent staying at home or non-
home locations (assumed to be indoors) and minutes spent on the road (or
in transit, travel mode unknown) and then converted to percentages out of
the 48-hr period for use in the analysis. The methods used to derive time-
activity patterns were based on [43, 44] and described in more detail in Xu
et al. [38].
GPS data was also used to construct 48-hr activity spaces and calculate

environmental exposures encountered within them [38]. Briefly, activity
spaces are defined as the local areas that individuals interact with when
they move around during their daily activities [45, 46]. We constructed
activity spaces using Kernel Density Estimation (KDE) method for each
individual and then calculated the following environmental exposures
within them: walkability index score, Normalized Difference Vegetation
Index (NDVI, greenness), parks and open spaces, traffic volume on primary
roads, and road lengths (for primary and secondary roads combined and
for minor streets). Data sources for these measures are listed in Table S3.
Briefly, KDE integrates time and space to account for durations of time
spent at certain locations and incorporates a distance decay kernel
function to assign higher weight to environmental features closer to the
locations where participants spent the most time in (compared to locations
they passed through) using pre-defined bin (e.g., 25 m) and neighborhood
sizes (e.g., 250 m) [45, 47]. Activity space calculations were conducted in
ArcGIS Pro 2.5 (Esri, Redlands, CA).

Outdoor PM2.5 chemical speciation in study region. PM2.5 metals and
carbonaceous components concentrations were available every third day
from the Chemical Speciation Network (CSN) [48] at the Downtown Los
Angeles monitoring station—the most proximal and central site in the
study area—and were downloaded from the EPA Air Quality System. Then,
the data was linked to personal monitoring 48- hr time periods based on
the overlapping dates.

Data analysis
Descriptive statistics were first conducted to plot the distributions of all the
variables (e.g., individual/residential environment data) for the participants.
Then, using USEPA PMF5.0 model, source apportionment analysis was
performed on personal PM2.5 measurements to identify main sources,
along with their contributions to PM2.5 mass. Once sources were resolved,
bivariate analysis was conducted between each PM2.5 source and several
variables describing personal behaviors, indoor/outdoor sources, and time-
activity patterns to confirm source identities and understand the personal
drivers that affect PM2.5 exposures.

Descriptive analysis. Descriptive statistics were calculated in SAS 9.4 (SAS
Institute Inc) to describe the distribution of personal PM2.5 mass
concentration, elemental components and carbon fractions (used in final
PMF analysis), questionnaire variables (home ventilation, time-activity
patterns, indoor sources, etc.), and environmental exposures (residential or
GPS-derived).

Source apportionment analysis. The USEPA PMF 5.0 model was used to
resolve and identify major sources of PM2.5 and quantify their mass

contributions using measured concentrations and sample-specific uncer-
tainties as inputs. Briefly, the PMF model uses factor analysis to identify
source contributions and profiles for a given number of sources through
solving the following equation: [19, 20, 49]

Xij ¼
Xn

k¼1

gikf kj þ eij (1)

where Xij represents the concentration of chemical component j in sample
i, gik represents the mass contribution of factor k in sample i, fkj represents
the loading of chemical component j on factor k, and eij is the residual error
for sample i and species j.
The PMF model solves Eq. (1) by minimizing the sum of squares object

function Q for a given number of factors k: [20, 49]

Q ¼
Xn

i¼1

Xm

j¼1

eij
uij

� �2
(2)

where uij is the uncertainty of species j in sample i. The model decomposes
the concentrations matrix into a contributions g matrix and profiles f
matrix and constrains results to be positive (or not significantly negative)
[20, 50]. Each observation is individually weighted by its uncertainty in Eq.
(2); therefore, samples with higher analytical uncertainties will have less
influence on the solution.
Based on the PMF-calculated signal-to-noise ratio (S/N) indicating the

degree of analytical noise relative to the concentration of each species
[19], we categorized species as “Bad” (S/N ≤ 0.2, excluded from analysis),
“Weak” (0.2 < S/N < 1, downweighted in the analysis), and “Strong” (S/
N ≥ 1, retained). Although Pb and V had S/N < 0.2, they were included in
the analysis as potentially important tracers of traffic and fuel oil,
respectively, and set to “Weak.”
Of the 36 elemental and carbon species, the following 16 were finally

included as “Strong” in the PMF analysis: BC, BrC, Ba, Ca, Cl, Cu, Fe, K, Mg,
Mn, Na, Ni, S, Si, Ti, and Zn. We also included 9 “Weak” species as follows:
Al, Br, Co, ETS, P, Pb, Se, Sr, and V. PM2.5 mass was designated as the total
variable. An extra 10% modeling uncertainty was added to account for
sampling or modeling errors not captured in the sample-specific analytical
uncertainties [19]. Missing concentrations were replaced by species’
medians. One out of 213 (0.5%) samples were excluded as outliers based
on multiple species’ concentrations.
Solutions with five to seven factors were scanned first to decide upon a

reasonable factor number in a final model with 100 runs. Q values were
checked for no undue influence from outliers and no local minimum
solutions. Based on chemical loading profiles and prior knowledge, the
optimal number of sources was selected which provided the most
physically interpretable solution [50]. The convergent solution with the
lowest Qrobust value (goodness-of-fit parameter excluding points with
uncertainty-scaled residuals greater than 4) was selected [19]. Fpeak
rotations, where positive F peak values sharpen the F matrix and
negative values sharpen the G matrix were performed next to refine the
solution. The optimal Fpeak value for solution rotation was chosen
based on the smallest change in Q [19]. Residuals and R2’s for
each species were checked for normality and model fit, respectively.
Finally, diagnostics analysis of Displacement (DISP), Bootstrap (BS)
(100 bootstraps, 0.6 minimum correlation), and Bootstrap-Displacement
(BS-DISP) were performed to estimate the variability in the PMF
solution under different scenarios. DISP focuses on effects of rotational
ambiguity in the profiles or loadings; BS identifies whether there are a
small set of observations that can disproportionately influence the
solution; and BS-DISP includes effects of random errors and rotational
ambiguity [19].

Bivariate confirmatory analysis of source identities and drivers. Bivariate
analyses were conducted to further confirm source identities and
examine trends in their mass contributions. Scatterplots, boxplots, and
nonparametric statistics (Spearman correlations for continuous variables
and Kruskal-Wallis test for categorical ones) were used to describe and
test the relationships of select factors (selected from the literature and
prior knowledge) with each source’s predicted mass contributions.
These included demographics, time-activity patterns, home character-
istics, indoor air pollution sources, and outdoor residential and
activity space based environmental exposures as described earlier.
Categorical variables with unbalanced values (≥85% of the records have
one value) or with high missingness (≥80%) were dropped from further
analysis.
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RESULTS
Descriptive statistics
Most of the participants (>98%) resided in central and east Los
Angeles, CA. The majority were Hispanic (78%), working (48%)
during the 3rd trimester, and completed grade 12 or less (55%)
(Table S1). Mean age was 28 years at consent (range 18–45 years)
and mean parity was 2 (range 1–6). Among participants who
reported annual household income, most of them had annual
household income <$30,000 (68%).
Personal PM2.5 mass and component concentrations are

provided in Table 1. Mean (SD) PM2.5 concentration was 22.3
(16.6) μg/m3. The optical carbon fractions BC, BrC, and ETS
combined constituted on average 17% (3.8) μg/m3 of the total
PM2.5 mass.
The distributions of home characteristics, indoor PM sources,

and selected time activities as reported in questionnaires or
derived from GPS are presented in Table S2. Based on the exit
survey, 60% of participants spent some time near traffic when
outdoors, and 34% spent more than 2 hrs per day commuting
during the 48-hr monitoring period. During sampling, 60% of
participants opened windows more than half of the time, 26%
used air conditioning and 37% used fans at home. In terms of
indoor PM sources, 38% were close to cooking smoke, 24% were
close to burning candles or incense, and 39% spent time close to
people smoking (cigarette, cigar, hookah, or pipe smoke) nearby.
In addition, 56% of participants lived in an apartment, 44% were
part of a household with >3 persons, and 43% lived in a home

built after the 1980s. Participants also spent an estimated mean
(SD) of their time at home 78.5% (19.6%) and at non-home
locations 15.2% (15.7%).

Source apportionment results
Fourteen observations had missing values and were replaced by
species median, including PM mass (3 obs), BC (3), BrC (6), and ETS
(2). A five-factor solution combined fuel oil and secondhand
smoking, while seven factors resulted in a non-interpretable factor
with single high loading of Zn. A six-factor solution was chosen as
the optimal, physically interpretable one (Qrobust= 5845.4 and
Qtrue= 6143.2). An Fpeak rotation of 0.1 was then applied with
100 bootstraps, which resulted in no unmapped factors (Table S4).
Some species with higher S/N ratio, e.g., BC, Cl, K, S, Ca, and Zn,
had non-normal residuals (Table S5).
The six sources together explained 48% of the variability in

PM2.5 mass concentration and included the following: Traffic,
Secondhand Smoking, Aged Sea Salt, Fresh Sea Salt, Fuel Oil,
Crustal (Fig. 1). Each of these is presented in more detail below
along with supporting relationships from confirmatory bivariate
analyses.

Traffic. The first source identified was traffic with high loadings
of BC, Zn, and Ba (Fig. 1). It contributed on average 2.6% of
personal PM2.5 mass (Table 2). Traffic was moderately positively
correlated with crustal and inversely correlated with fresh sea salt
and fuel oil sources (Table 3). It was strongly correlated with
outdoor residential ambient (NO2 and PM2.5) and traffic-related
(total CALINE4 NOx) air pollutants. It was also negatively correlated
with outdoor O3. In addition, Traffic source contributions increased
with greater length of primary roads in the KDE activity space
(Table 4).

Secondhand Smoking. This second source had a high loading of BrC
and ETS (Fig. 1). With an average mass contribution of 11.9 μg/m3, it
contributed the majority of personal PM2.5 mass (65.3% on average)
(Table 2). Participants living in apartments seemed to have slightly
higher exposure to this source compared to those living in houses
(13.0 vs. 10.5 μg/m3, respectively, not significant, Fig. 2a). This source
was also slightly negatively correlated with greater window opening
time. Secondhand smoking (SHS) was also slightly higher when
participants were close to 2+ persons smoking nearby as compared
to one (among ~33% of participants reporting being close to
someone smoking in the 48-hrmonitoring period) (13.2 vs. 11.0 μg/m3

respectively, not significant). To eliminate the possibility that this
source is capturing an outdoor biomass burning signal, we checked its
correlation with outdoor potassium (elemental, K), potassium ion (K+),
and elemental and organic carbon concentrations at the Downtown

Table 1. PM2.5 mass and chemical component concentrations (in units
of ng/m3 unless otherwise noted).

N Mean SD

PM2.5 mass (μg/m3) 209 22.3 16.6

Carbon species

BC (μg/m3) 209 1.1 1.7

BrC (μg/m3) 206 1.1 0.8

ETS (μg/m3) 210 1.6 6.1

Elements

Al 212 12.4 47.2

Ba 212 14.2 13.5

Br 212 3.0 3.1

Ca 212 85.6 141.2

Cl 212 126.5 253.2

Co 212 0.5 0.8

Cu 212 18.7 12.2

Fe 212 122.2 110.7

K 212 105.6 142.0

Mg 212 39.0 62.6

Mn 212 2.6 2.9

Na 212 306.0 301.4

Ni 212 2.3 2.7

P 212 5.4 17.8

Pb 212 1.4 2.6

S 212 401.6 293.3

Se 212 1.6 1.8

Si 212 165.7 203.3

Sr 212 1.8 6.7

Ti 212 10.2 12.7

V 212 0.6 1.2

Zn 212 13.1 17.5

Fig. 1 PMF-predicted source loading profiles (in % of species).

Sources are color coded as shown:

Sources
Traffic
Secondhand Smoking
Aged Sea Salt
Fresh Sea Salt
Fuel Oil
Crustal

.
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CSN site, all of which showed insignificant weak correlations (Table 4).
SHS was also not correlated with any questionnaire variables on
indoor cooking (frequency, use, etc.).

Aged sea salt. This third source had high loadings of Na, Mg, and
S (Fig. 1). It contributed on average 4.3% of the personal PM2.5 mass
(Table 2). Aged sea salt was negatively correlated with the SHS
source (Table 3). It was strongly positively correlated with outdoor
O3 concentration and temperature and negatively correlated with
wind speed (Table 4). Aged sea salt was also significantly positively
correlated with window opening time (Fig. 2b).

Fresh sea salt. This fourth source had high loadings of Cl, Na, and
Mg (Fig. 1). It contributed on average 4.7% of the personal PM2.5

mass (Table 2). Fresh sea salt was negatively correlated with traffic
and SHS sources (Table 3). The mass contribution of this source
were significantly different across different wind directions, with
the highest contribution on days when average wind direction
originated from the west (NW followed by SW, Fig. 2c). It was also
positively correlated with outdoor residential wind speed and
relative humidity. To eliminate the possibility of this being an
indoor source related to aerosolized minerals from domestic water
use or salt used in cooking [32, 35, 51], we checked its relationships
with humidifier usage and time close to smoke from cooking,
respectively. Even though the sample size was unbalanced (30 out
of 212 reported using a humidifier), average mass contributions
were lower (not significant) when people used a humidifier
compared to not (0.5 vs. 0.9 μg/m3, respectively). Similarly, mass
contributions were lower when participants reported spending
more time close to smoke from cooking. In addition, fresh sea salt
was moderately positively correlated with ambient Cl and Cl− as
measured at the Downtown Los Angeles site (Table 4).

Fuel oil. This source had high loadings of Cu, Ni, and V (Fig. 1). It
contributed the second largest share of personal PM2.5 mass
(11.7%) with an average mass contribution of 2.1 μg/m3 (Table 2).
Fuel oil was positively correlated with crustal and negatively
correlated with traffic sources (Table 3). This source was slightly
higher (non-significant) in participants living in homes built before
1980 compared to after (2.4 vs. 1.9 μg/m3). Fuel oil was also
positively correlated with outdoor NO2 and negatively correlated
with O3 (Table 4).

Crustal. The sixth and final source had high loadings of crustal
elements Ca, Si, Ti, and Al (Fig. 1). It contributed 11.5% (2.1 μg/m3)
of personal PM2.5 mass on average (Table 2). Crustal was
moderately positively correlated with traffic and fuel oil sources
(Table 3). Living in a household with 4+ occupants was associated
with greater contributions of this source compared to fewer
occupants (2.5 vs. 1.2 μg/m3, p value= 0.04, Fig. 2d). It was also
positively correlated with outdoor NO2 and PM10 concentrations
and negatively correlated with relative humidity and precipitation
(Table 4).

DISCUSSION
We identified six sources of personal PM2.5 exposure along with
their mass contributions in the 3rd trimester of pregnancy, in a
population of 212 low-income, predominantly Hispanic pregnant
women living in Los Angeles, CA. Secondhand smoking (SHS)
followed by fuel oil and crustal were the biggest contributors to
personal PM2.5 exposures. Of the six sources, SHS and crustal
appeared to be of indoor origin (or closely related to indoor
activities), while traffic, aged and fresh sea salt, and fuel oil were of
outdoor origin. Secondhand smoke was the single largest
contributor to total personal PM2.5 mass concentrations. The
combined indoor source contributions (14 ± 10 μg/m3) were more
than triple those of outdoor sources (4.2 ± 2.9 μg/m3), highlighting
the importance of the indoor environment in contributing to
personal exposures during this critical window of time.
SHS is also a well-known indoor air contaminant [52, 53]

associated with a suite of adverse health effects [54–56]. This
source had high loadings of BrC and ETS (the lab-reported marker
of SHS), and some loadings of Br and K which were related to
tobacco smoke in previous studies [39, 57, 58]. In order to avoid
overloading the samplers with particles from primary tobacco
smoke which would also overshadow chemical fingerprints from
other sources if present, by design, we excluded participants who
reported smoking themselves (this did not occur in this
population) or those with an active smoker permanently residing
in their household (despite this latter criterion not being

Table 2. Predicted source contributions to personal PM2.5 mass
concentrations.

Sources Average (SD) mass
contribution (μg/m3)

% contribution to
personal PM2.5 mass (%)

Traffic 0.5 (0.6) 2.6

Secondhand
smoking

11.9 (9.2) 65.3

Aged sea salt 0.8 (0.8) 4.3

Fresh sea salt 0.9 (2.1) 4.7

Fuel oil 2.1 (1.6) 11.7

Crustal 2.1 (3.6) 11.5

Table 3. Spearman correlation matrix of PMF-predicted PM2.5 source contributions, colored from low (blue) to high (red).

Values in bold font represent significant p values at p < 0.05 level.
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consistently applied throughout the study). Despite the low
smoking prevalence and these design restrictions, secondhand
smoking was still identified as the source with the largest
contribution to personal PM2.5 exposures in our study. The mass
contributions of this source (and measured ETS concentrations)
did not show any clear changes over time as the study progressed,
suggesting that recruitment decisions did not significantly
influence our findings. This source has been found in other
personal PM2.5 monitoring studies [34, 35, 59]. Minguillón et al.
[34] identified cigarette sources in the personal, indoor and
outdoor environments for the pregnant women living in
Barcelona, Spain. Özkaynak et al. [35] found nicotine mainly in
the personal sample and indoor environment for the nonsmoking

residents in Riverside, California. Using a real-time PM2.5 monitor
in personal and residential environment, Zhang et al. [59] found
SHS distribution in children with and without self-reported SHS
exposure in New York City, where children from smoking families
had six times that of SHS exposure for children from non-smoking
families. All these studies, including the current one, demonstrate
that SHS source is a common finding in the personal monitoring
studies. This suggests that secondhand (and possibly thirdhand)
smoke exposure remains an issue of public health concern
especially during pregnancy and in the context of our population,
despite the success of large-scale bans on public smoking. We
found that participants living in apartments tended to have
marginally higher exposure to secondhand smoking than those
living in detached houses. This could suggest greater potential of
secondhand smoke infiltration from adjacent units in an apart-
ment building or from visitors smoking [60–62]. Anecdotal
evidence from the study (data not shown) also suggests second-
hand smoke exposure could be occurring outside of the residence,
during public transit or while commuting, and warrants further
investigation.
We also found both fresh and aged sea salt—sources of

outdoor origin—contributed to personal PM2.5 exposures in our
study with high loading of Na, Mg, Cl (fresh only), and S (aged
only). Previous work identified sea salt or marine aerosol sources
with similar loading profiles [16, 23, 63]. Despite only having
access to average wind direction data over the 48-hr monitoring
period (not an ideal wind measure compared to most frequent
wind direction for example), fresh sea salt mass contributions were
higher with westerly winds and higher wind speeds, which
provides greater potential for aerosolization and airborne trans-
port of sea salt particles from the Pacific Ocean. Habre et al. [23]
found sea salt mass contributions to PM2.5 mass in southern
California to be highest in coastal communities. As fresh sea salt
ages and undergoes photochemical reactions that also lead to
secondary O3 formation, chlorine is lost and sulfates are formed
[23, 64]. Thus, aged sea salt resembles fresh sea salt in its loading
profiles, except with S substituting Cl. Lower wind speed, stagnant
conditions, and warmer temperatures provide more chemical
reaction time and contribute to the loss of Cl and formation of O3

as fresh sea salt ages [65, 66]. Given the mild, coastal southern
California climate year-round, it is not surprising to see both
outdoor sea salt sources contributing to personal PM2.5 exposures
of pregnant women in our study.
As for the crustal source, crustal elements such as Al, Ca, and Ti

are naturally present in the earth’s crust. They originate outdoors
and can enter the indoor environment as windblown dust or as
dust tracked indoors on residents’ shoes. Once indoors, crustal
materials will typically settle and get resuspended as indoor
sources (or emissions of indoor origin) when disturbed by human
movement or other activities (i.e., vacuuming). Therefore, the
presence of more occupants in a household provides greater
opportunities for re-suspension of crustal dust, similar to earlier
studies [26]. Despite crustal being positively correlated with the
traffic source, it did not have any loadings of known traffic-related
markers (BC, Ba, Zn, Cu) suggesting it was not reflecting a road
dust signal [67]. As such, crustal can be thought of as a
predominantly indoor origin source despite the possibility of our
participants getting exposed to crustal dust outside of their
homes, in daily commutes, and outdoor activities.
Finally, we found that fuel oil and traffic sources contributed to

personal PM2.5 exposures as well. Similar to previous studies, the
fuel oil source had high loadings of Ni and V which are known
tracers of heavy residual fuel oil combustion in industrial
applications, certain heavy-duty machinery, and in marine engine
emissions [68–72]. BC serves as a traffic marker especially for
diesel engines [16, 26], while Zn, Ba, and Fe are related to motor
vehicle exhaust emission, brake and tire wear, and diesel additives
[73, 74]. Traffic is an important source of air pollution in Los

Table 4. Spearman correlations between PMF-predicted PM2.5 source
contributions and select continuous variables.

Sources Variables Spearman
correlation

Traffic Outdoor air pollution at
the residence

O3 −0.35

NO2 0.61

PM2.5 0.43

Total NOx from local
traffic on all road classes
(CALINE4)

0.15

Total length of primary
roads within KDE area

0.15

Secondhand
Smoking

Ambient air pollution at
Downtown Los Angeles
monitoring site

Potassium ion (K+) 0.12

Potassium (element, K) −0.04

Elemental carbon 0.04

Organic carbon 0.09

Aged Sea Salt Outdoor air pollution and
meteorology at residence

O3 0.53

Wind speed −0.22

Temperature 0.55

Fresh Sea Salt Outdoor meteorology at
residence

Wind speed 0.27

Relative humidity 0.16

Ambient air pollution at
Downtown Los Angeles
monitoring site

Chloride ion (Cl-) 0.24

Chlorine (element, Cl) 0.20

Fuel Oil Outdoor air pollution at
residence

O3 −0.18

NO2 0.17

Crustal Outdoor air pollution and
meteorology at residence

NO2 0.39

PM10 0.24

Relative humidity −0.48

Precipitation −0.16

Values in bold font represent significant p values at p < 0.05 level.
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Angeles, CA [23, 25]. Our study shows that greater concentrations
of traffic-related pollutants outdoors (CALINE NOx and ambient
NO2) and spending more time near primary roads (in actual
activity spaces) correlate with greater personal exposure to the
PM2.5 traffic source. It is also important to note that the traffic
source had high loadings of tailpipe combustion markers (BC) and
non-exhaust brake and tire wear markers (Ba and Zn, respectively)
potentially capturing both tailpipe and non-tailpipe traffic
exposures.
The strengths of this study include the personal PM2.5

measurements and detailed chemical composition analysis that
allowed us to apportion the major sources of personal PM2.5

exposure during a critical time window of pregnancy. By
integrating concurrently collected questionnaire data and geos-
patially modeled environmental exposures in activity spaces (from
GPS) and in the residential neighborhood, the results further
corroborate these sources, their determinants, and origin (primar-
ily indoor vs outdoor). However, the PMF model only explained a
portion of the variability in personal PM2.5 mass concentrations (R2

0.48). One possible reason could be that we did not measure
organic carbon (OC) species on the Teflon filters in this study
which are known to contribute a large fraction of indoor PM2.5

mass concentrations [26, 75]. It was also possible that some of
most volatile OC species and ammonium nitrate among others

volatilized off the filters; we found higher temperature was
associated with lower personal PM2.5 mass in bivariate analysis
[38]. We also did not measure volatile organic compounds or other
species that could potentially contribute significantly to personal
air pollution exposures (in different phases, and not just in PM2.5).
The sample size of the study, while considered large in personal
monitoring settings, and the short monitoring period may limit
the generalizability and representativeness of personal PM2.5

exposures beyond this study area and across the full pregnancy
and postpartum periods.

CONCLUSION
This is one of the few studies to conduct a thorough
characterization of sources impacting personal PM2.5 exposures
of predominantly Hispanic and low-income women during
pregnancy in an environmental health disparities context. Our
findings show the diversity of sources that impact personal PM2.5

exposures in pregnancy in Los Angeles, CA. With ~ 77% of
personal exposures contributed by indoor sources, the findings
highlight the importance of the indoor environment contributions
to total PM2.5 exposures during pregnancy and the potentially
incomplete understanding of this population’s exposures by solely
relying on outdoor air pollution measures. These results may

Fig. 2 Relationship between source mass contributions (y-axis) and environmental or home characteristics. a Secondhand smoking
and home type, b aged sea salt and window opening time in the 48-h monitoring period, c fresh sea salt and average wind direction in the
48-h monitoring period, and d crustal and number of household occupants (*The relationships in (b d) were significant with Kruskal-Wallis test

p value < 0.05)
Boxplot

Mean
.
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inform source-specific health investigations and subsequent
interventions to reduce exposure to potentially more harmful
components of PM2.5.
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