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BACKGROUND: Modern health concerns related to air pollutant exposure in buildings have been exacerbated owing to several
factors. Methods for assessing inhalation exposures indoors have been restricted to stationary air pollution measurements, typically
assuming steady-state conditions.
OBJECTIVE: We aimed to examine the feasibility of several proxy methods for estimating inhalation exposure to CO2, PM2.5, and
PM10 in simulated office environments.
METHODS: In a controlled climate chamber mimicking four different office setups, human participants performed a set of scripted
sitting and standing office activities. Three proxy sensing techniques were examined: stationary indoor air quality (IAQ) monitoring,
individual monitoring of physiological status by wearable wristband, human presence detection by Passive Infrared (PIR) sensors. A
ground-truth of occupancy was obtained from video recordings of network cameras. The results were compared with the
concurrent IAQ measurements in the breathing zone of a reference participant by means of multiple linear regression (MLR)
analysis with a combination of different input parameters.
RESULTS: Segregating data onto sitting and standing activities could lead to improved accuracy of exposure estimation model for
CO2 and PM by 9–60% during sitting activities, relative to combined activities. Stationary PM2.5 and PM10 monitors positioned at the
ceiling-mounted ventilation exhaust in vicinity of the seated reference participant accurately estimated inhalation exposure
(adjusted R²= 0.91 and R²= 0.87). Measurement at the front edge of the desk near abdomen showed a moderate accuracy
(adjusted R²= 0.58) in estimating exposure to CO2. Combining different sensing techniques improved the CO2 exposure detection
by twofold, whereas the improvement for PM exposure detection was small (~10%).
SIGNIFICANCE: This study contributes to broadening the knowledge of proxy methods for personal exposure estimation under
dynamic occupancy profiles. The study recommendations on optimal monitor combination and placement could help stakeholders
better understand spatial air pollutant gradients indoors which can ultimately improve control of IAQ.
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INTRODUCTION
Indoor air quality (IAQ) is shaped by myriad factors such as
ventilation strategy, space type, and outdoor and indoor climatic
conditions and air pollution sources [1]. In particular, human
presence and activities have considerable impact on spatio-
temporal variation of indoor air pollutants such as particulate
matter (PM), carbon dioxide (CO2), and total volatile organic
compounds (TVOCs) [2, 3]. Exposure to elevated levels of
metabolically–generated CO2 could have implications for several
health symptoms (e.g., sneezing, irritated eyes, dry or itchy skin),
impaired cognitive functioning and decision making [4, 5].
Similarly, elevated exposure to PM2.5 and PM10 can increase
cumulative incidence of respiratory symptoms such as, throat
irritation, coughing, asthma [6].

In office buildings, where occupants are often major contribu-
tors to air pollution burden [7], occupancy information could be
utilized to characterize IAQ. Occupant activities (e.g., walking,
cleaning, and sitting on furniture) cause resuspension of particles,
particularly in the coarse (>2.5 μm) size range [8, 9]. Humans also
generate bioeffluents including water vapor, CO2, and VOCs
[10–12]. Thus, occupancy-associated emissions are potent deter-
minants of IAQ and as such, they play a fundamental role in
exposure estimation and ventilation control [13, 14].
Inhalation exposure assessment studies performed in controlled

chambers typically included steady-state conditions and a fixed
occupancy [15–17]. Although steady-state studies can be useful,
highly controlled environments give little resemblance with the
actual exposures that are encountered in real buildings.
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Furthermore, in spaces where indoor air is imperfectly mixed,
spatial heterogeneity of air pollution represents a challenge for
assessing inhalation exposures [18].
The common practice of positioning an IAQ monitor indoors is

based on standard recommendations that consider the ergo-
nomics of the thermal environment (e.g., EN ISO 7726:2001, EPA
Air Sensor Guidebook) [19, 20]. Researchers typically position CO2

monitors in the middle of an occupied zone with heights between
1.0–1.2 m, which falls into a breathing zone height [21]. Other
frequently selected locations for examining indoor air pollution
include supply/exhaust ventilation grills, walls and office desks
[22, 23]; although substantial differences between concentrations
recorded from stationary monitors and those recorded in the
breathing zone of occupants have been reported [24, 25].
To improve the accuracy of personal air pollution exposure

assessment, several studies have combined other methods with
IAQ monitoring [26–28]. These studies collected occupancy
information through self-reported diaries, staff monitoring or
Passive Infrared (PIR) sensors, and correlated them with personal
CO2 [26, 27] or PM [26, 28] exposures. However, previous studies
have not investigated occupancy characteristics (e.g., occupant
activities) in order to better characterize inhalation exposure to
indoor air pollutants.
As previously noted, methods for detecting personal exposures

to CO2 and PM under dynamic indoor environments are largely
unexplored. To bridge this knowledge gap, our study examined a
combination of physical parameters (environmental, contextual,
and physiological) which best represents inhalation exposures to
CO2, PM2.5, and PM10 in a simulated office environment with
dynamic occupancy profiles. Specifically, we performed contin-
uous air quality measurements in the breathing zone of a
reference participant with the concurrent IAQ measurement by
stationary monitors, occupancy presence by PIR sensors, physio-
logical characteristics of the participant by wearable wristband. A
ground-truth occupancy was collected from the network cameras
installed in the chamber. A multiple linear regression (MLR)
analysis was applied to identify the best proxy methods to detect
inhalation exposure to CO2, PM2.5, and PM10. Finally, we proposed

the best proxy method(s) for characterizing inhalation exposure
for investigated scenarios, which includes information about what
parameters to monitor and where.

METHODS
Chamber description and space layouts
The experiments were conducted in a controlled climate chamber (floor
area: 24.8 m2, volume: 60m3), where air temperature and relative humidity
were controlled within narrow ranges, 24.9 ± 0.4°C and 54.3 ± 4%,
respectively. To simulate typical mechanically-conditioned office spaces,
we selected the mixing ventilation strategy, which is the most common air
distribution method applied in commercial office buildings [29]. Here, the
conditioned air was supplied and exhausted through the two swirl-type
diffusers at the ceiling of the chamber (Fig. 1). The air change rate was
constant (2.4–2.6 h−1), which was confirmed by the CO2 tracer gas decay
method [30]. The corresponding air change rate matched the recommen-
dation value (ventilation rate of 144–156m3/h for four persons and a floor
area of 24.8 m2) from the European standard of EN16798-1 (Non-residential
building; Category 1) [31]. The supply air was 100% outdoor air filtered by
two-stage media filter (F6 and F9) and additional HEPA filter, so that
background particle level was close to zero.
We studied four typical workplace layouts: Shared office 1 and 2

(without and with a common space), Meeting room, and Cafeteria. For
instance, the Shared office 1 consisted of two or four office desks/chairs
depending on the number of participants (two and four), and kettle and
coffee machine on two cabinets (Fig. 1). The details of each floor plan with
furniture organization are presented in Figure S1.

Human participants
A total of six human participants were recruited (three males and females).
The number of the participants was two and four for the two shared
offices, and six for the Meeting room and Cafeteria. The selected
occupancy number was based on occupancy density in office building
specified by the Standard EN16798-1 [31]. The age of participants was
between 26–31 and the average BMI ranged within 20.3–23.8 kg/m2 for
females and 25.1–31.8 kg/m2 for males. We distributed the number of
males and females equally in each experiment to minimize the impact of
gender on human CO2 emission [11, 15] and maintained the same
participants throughout the experiments. The participants wore typical
office summer clothing (average 0.4 clo). One female participant (28 years

Fig. 1 Example of monitor placement in the Shared office 1 (4 participants) and exposure measurement (CO2, PM) in the breathing zone
of the reference participant. Each monitor location is marked with an ID number which is described in Table 1. Notes: E1 = Exhaust 1, E2 =
Exhaust 2.
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old, BMI= 22.4 kg/m2) was designated as a reference participant for
inhalation exposure measurements.

Experimental design
We conducted a total of 11 chamber experiments during the summer period
(13.07.2020–11.08.2020, Table S1). Each experiment was replicated two times
except the cafeteria scenario. The measurements included the following
three categories: air quality parameters (CO2, PM2.5, and PM10), contextual
parameters (participants’ presence, number, body posture, and type of office
activity) detected by PIRs and network cameras, and physiological
parameters (skin temperature, heart rate and 3-axis acceleration) recorded
by wearable wristbands. We determined seven sensor placements (IDs 1–7,
Table 1) based on the literature and current best practices [24, 32, 33]. One
example of monitor placement for the Shared office 1 is shown in Fig. 1,
whereas the others are shown in Fig. S1. For breathing zone measurements,
the reference participant wore one CO2 and one optical particle counter
(OPC) at the sampling point located 20 cm below the nose (Fig. 1). The
sampling tube connected to the CO2 monitor was fixed near the reference
participant’s chest, whereas the OPC was placed in the pocket of an
experimental vest. Two network cameras were installed at the ceiling and
wall to provide ground-truth occupancy information.
The reference participant received wearable wristband before entering

the chamber. Upon entering the chamber, the participants filled out the
questionnaire about the seat number and their personal information (age,
height, weight and clothing). During the experiment, the participants
followed a set of scripted activities that were executed simultaneously by all.
Seven activities were executed in two shared office spaces and six in the
Meeting room and Cafeteria to simulate realistic occupancy interactions. All
activities excluding entering and leaving the chamber were divided into two
activity conditions: sitting activities and standing activities. Standing activities
included standing or walking. A detailed description of scripted activities is
provided in Fig. S2. Duration of each activity spanned from 5 to 25min. All
the participants exited the chamber after 60min of the experiment and the
chamber was sealed for 30min to permit monitoring air pollutant
concentration decay. The ethical and safety considerations of the experi-
ments were approved by the Human Research Ethics Committee of EPFL.

Research instrumentation
Two types of monitors were deployed to measure stationary indoor and
breathing zone CO2 concentrations. Three HOBO MX CO2 Loggers
(MX1102, Onset Computer Corporation, USA, measurement range: 0 to
5000 ppm, accuracy: ±50 ppm) were used for stationary indoor CO2

measurements. Additional two high-accuracy gas analyzers (LI-850, LI-COR
Biosciences GmbH, Germany, measurement range: 0 to 20,000 ppm,
accuracy: ±1.5%) with an air pump were deployed at the Exhaust 1 and at
the Breathing zone of the reference participant. To capture size-resolved

particle number concentration, we used four stationary and one wearable
OPCs. Stationary monitors included: Met One 804 (Metone instruments,
USA, 4 channels, size range: 0.3–10 μm, accuracy: ±10% to traceable
standard) at the Exhaust 1 and the Front edge of participant desk; Met One
HHPC 6+ (Beckman Coulter, USA, 6 channels, size range: 0.3–10 μm,
counting efficiency: 50% at 0.3 μm (100% for particles >0.45 μm)) at the
Exhaust 2; Mini-WRAS 1371 (GRIMM Aerosol Technik Ainring GmbH & Co.,
Germany, size range: 10 nm to 35 μm, >95% accuracy for single particle
counting) on the Desk near the reference participant. One OPC (Met One
804) was worn by the reference participant.
Three PIR sensors (HOBO Occupancy/Light Data Logger, UX90-006x,

Onset Computer Corporation, USA, Detection range: 12 m) were installed
in the chamber. We also introduced one wearable wristband (E4, Empatica
Inc., USA, frequency range: 32 Hz) that measured physiological state of the
reference participant. Lastly, we installed two network cameras (M1065-LW
and M3057-PLVE, Axis communications, Sweden, frequency range: 64 Hz)
inside the chamber. All IAQ data were obtained at 1-min time intervals
except for the CO2 measurements at breathing zone, which was measured
at 0.5-s interval. The PIRs recorded occupancy information as binary code
at 1-min time interval. Skin temperature was measured at 4 Hz frequency
(0.25 s), heart rate at 1 Hz frequency (1 s) and acceleration at 32 Hz
frequency (0.03125 s).

Data analysis
Kierat et al. [16] proposed that accurate CO2 exposure assessment requires
breathing zonemeasurements to be performed during the inhalation period
only. To eliminate the effect of human exhalation, we selected only a single
minimum value (Fig. S3) out of one respiratory cycle, where each cycle
typically had six measurement points. Then the average breathing zone
concentration was calculated as the average of the minimum concentrations
recorded in each respiratory cycle. The possible lag between respiratory
phase air sampling moment and the actual instrumental measurement time
was removed. For breathing zone PM measurement, the full duration of the
respiratory cycle was considered. The PM mass concentration (μg/m3) was
estimated from measured number concentration by assuming that particles
are spherical with density of 2.5 g/cm³, and by supposing that the mass-
weighted size distribution, dM/d(log dp), is constant within each particle size
group [34]. As density of indoor particles is typically in the range 1–2.5 g/cm³,
the reported particle mass concentrations are likely to be upper-bound
estimates [35].
We removed the contribution of the former activity to the CO2 and PM

concentrations due to multiple participant activities conducted in a
relatively short time period. We firstly estimated CO2 concentration by
removing preceding 5-min average CO2 concentration from each time
stamp (Fig. S4). For PM, we followed data processing approach described
in [9] where the evolution of PM level from the former activity was
calculated and removed (Fig. S5).

Table 1. Monitor ID, measurement parameters, and placements.

ID Parameters measured Measurement placement (No. of monitors) Measurement method

1 CO2,
Size-resolved particle number concentration

Front edge of participant desk (1) CO2 monitor, OPC

Front edge of desk near an abdomen of the reference
participant

2 Desk (1) CO2 monitor, OPC

On each participant’s desk

3 Exhaust (2) CO2 monitor, OPC

Ceiling-mounted exhaust diffusers, 2.4 m

• Exhaust 1 (E1, Fig. 1): near the reference participant

• Exhaust 2 (E2, Fig. 1): additional placement

4 Breathing zone (1) CO2 monitor, OPC

20 cm below from the reference participant’s nose

5 Participant presence, number, body posture, and type of
office activity

Ceiling (2) PIR, Network camera

Ceiling in the center of the chamber, 2.4 m

6 Wall (2) PIR, Network camera

Side wall, 1.4 m and 2.0 m

7 Participant presence Below the desk (1) PIR

Below the participant desk
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Pearson correlation r value indicates existence of association between
the measured variables, where stronger linear relationship appears as the r
value approaches ±1 [36]. Our study examined r value between the
measured IAQ parameters in order to identify the strength of the
correlation between them. Through MLR analyses, we composed regres-
sion models by investigating the appropriateness of various physical
parameters (presented as input variables) to estimate human exposure
(presented as output variable) to CO2, PM2.5, and PM10 (Fig. 2). Firstly, we
composed a regression model by using input variable from each data
category: 1) air quality; 2) contextual; 3) physiological. We also included
participant number as input variable to build a model that is not restricted
to one specific office scenario. Data from all office layouts were integrated
in analysis to create sufficient datasets to derive validate models. The
ground-truth data (type of activity and body posture of the participants)
acquired from network cameras allowed us to separate office activities into
sitting and standing. Occupancy data obtained from PIR at Wall (2.0 m) and
IAQ data of Exhaust 2 were excluded because of their limited datasets.
Then, we composed regression models with input variables from all three
different data categories and evaluated their accuracies compared to a
model built with the air quality data only. The adjusted R2 values of each
model were identified and compared to assess model accuracy, where the
value of 0.75, 0.50, or 0.25 was deemed as strong, moderate or weak fit of

the model as rule of thumb [37, 38]. Further, we examined β (standardized
regression coefficients) to identify the positive or negative relationship
between the input and output variables, and the magnitude of
contribution of the input for estimation accuracy.

Quality assurance
All the CO2 monitors and OPCs were calibrated ahead of the experiments with
side-by-side test to eliminate the gap of measurement discrepancies among
the monitors. The HOBO MX CO2 Loggers were inter-calibrated based on the
linear correlation with the high-accuracy gas analyzer (LI-850) in a controlled
chamber. The OPCs (two Met One 804 and one Met One HHPC 6+) were
compared against the high-accuracy OPC (Mini-WRAS 1371). Adjustment
factors of the side-by-side instrument performance tests are shown in Table S2.

RESULTS AND DISCUSSIONS
Summary of descriptive statistics and correlations of IAQ
measurements
In order to understand spatial IAQ variations in the chamber, we
examined variations of studied air pollutant concentrations in

Fig. 2 Input and output variables in composing MLR models. Selection criteria were applied while separating the collected data into
sitting and standing activities. Notes: Exhaust 2 was not included as input in MLR analysis. Tskin stands for skin temperature, HR for heart
rate, and ACC for resultant acceleration (ACC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ACC x2 þ ACC y2 þ ACC z2
p

). Description of sitting and standing activities is shown in
Figure S2.

Fig. 3 The CO2, PM2.5 and PM10 concentration at different stationary monitors across all activities and experiments.
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relation to monitor placement. Figure 3 shows minimum, first
quartile, median, third quartile, maximum and average CO2, PM2.5,
and PM10 concentrations for each monitor placement (ID 1–4)
averaged across all activities and experiments. Regardless of the
air pollutant type, the breathing zone concentrations were
substantially higher relative to stationary concentrations. The
average of breathing zone CO2 concentrations of the reference
participant were approximately two times higher than the ones
from stationary monitors. This finding showed a notable increase
in breathing zone CO2 concentration compared to a study by

Melikov et al. [39], where CO2 concentration inhaled by a
breathing thermal manikin was only 16% higher than in the
room exhaust. The average PM2.5 and PM10 showed 6.7× and 6.8×
higher concentrations at the breathing zone than the ones at
stationary monitors, respectively.
The highest average CO2 and PM10 concentration among

stationary IAQ monitors were recorded at the Front edge of
participant desk which was the closest stationary monitor to the
reference participant. This can be a result of exhaled CO2 jet that
propagates downwards during sitting activities, as well as

Fig. 4 Pearson correlations of CO2, PM2.5, and PM10 measurements during sitting, standing, and combined participant activities.
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human thermal plume that transports locally generated airborne
particles to the breathing zone [40]. This was not the case of
PM2.5, where the highest average concentration among sta-
tionary monitors was detected at the Exhaust 1, likely because of
vigorous activities (e.g., stuffing the cabinet with paper boxes)
that occurred nearby. Further, we compared the absolute mean
CO2 and PM10 concentration between the Exhaust 1 and Exhaust
2 (Fig. S6), where difference and variation of mean concentration
were trivial in case of CO2, while it was significant in case of
PM10.
Figure 4 shows the Pearson correlation r values between

stationary indoor and breathing zone CO2 and PM concentrations
during sitting, standing, and combined (sitting and standing)
activities. Relative to combined activities, r values for CO2 were
often higher when we segregated participant activity into sitting
and standing activities. The correlation r between the CO2 in the
breathing zone and at the Front edge of participant desk was 45%
higher during sitting activities relative to combined activities. For
standing activities, the relative increase was 36% and 32% at the
Exhaust 1 and Desk locations compared to combined activities.
CO2 measurements at the Exhaust 1 had a moderate correlation
(r= 0.526) with the breathing zone measurements during stand-
ing activities. This finding agrees in part with a study by Pei et al.
[24] who reported CO2 measured at the room exhaust well
correlates with the inhalation exposure to CO2 under mixing
ventilation. The two highest correlations between breathing and
stationary CO2 measurement were at Exhaust 1 and Desk during
standing activities. This is due to the contribution of spatial air
pollution gradients and the proximity between the reference
participant and the sensor locations during the standing activities.
During the sitting activities, a relatively weak correlation (−0.3)
between CO2 at the Exhaust 1 and in the Breathing zone may be
attributed to spatial non-uniformity of air pollution concentration
and greater distance between Exhaust 1 and seated reference
participant. Lu et al. [41] also recognized that inconsistent patterns
of CO2 concentrations in breathing zone of occupants may
contribute to discrepancies of correlations between room exhaust
and breathing zone CO2 level.
The correlation r between stationary and Breathing zone PM2.5

and PM10 measurement improved marginally during sitting
activities (4–7%) and did not improve during standing activities
compared to combined activities (Fig. 4). Sitting activities had
better correlation for PM2.5 and PM10 than standing activities by
threefold. Specifically, the correlation r between Exhaust 1 and
Breathing zone during sitting condition showed over 0.9 for both
PM2.5 and PM10. Low correlation between stationary and breathing
zone PM levels during standing activities is attributed to irregular

and high-intensity activities that resulted in highly episodic
particle emissions. This result confirms that human inhalation
exposure can be highly dependent on human activity and its
intensity [17, 42]. Further, we compared correlation r between the
two exhausts with the Breathing zone measurement (Table S3). In
case of PM10, r value at Exhaust 2 decreased by 41–83% compared
to the one at Exhaust 1 due to the distance between the reference
participant and the deployed OPCs.

Multiple linear regression models for estimating human
exposure
MLR models based on stationary IAQ measurements. We investi-
gated the accuracy of human exposure estimation to CO2, PM2.5,
and PM10 by using the input variables from the stationary IAQ
monitors. Regression model for each studied air pollutant was
proposed while considering a different number (1, 2, or 3) and
combination of IAQ input variables. Table 2 shows adjusted R²
values of each model under combined and separated sitting and
standing activities. Segregated human activities can improve
inhalation exposure estimation for all studied air pollutants.
During standing activities, accuracy for estimating CO2 inhalation
exposure was 77% higher compared to one under combined
activities. This result agrees with the previous report (Fig. 4) of
significant improvement of correlation between stationary and
breathing zone CO2 measurements when participants’ activities
were separated. Accuracy of PM2.5 and PM10 exposure estimation
was 8% higher during sitting activities (adjusted R2 0.93 and 0.91
respectively) compared to the ones during combined activities. In
case of PM, sitting activities had better estimation accuracy relative
to combined activities owing to a closer distance between seated
participants and the OPCs with a fewer episodic particle emission
relative to standing activities. Licina et al. [42] also identified
personal cloud effect with elevated PM concentration in breathing
zone of seated occupants while reporting that well-mixed
representation of indoor space might underestimate human
exposure to coarse particles. During sitting activities, the best
single input variable for PM2.5 and PM10 exposure detection was
PM measurement at the Exhaust 1 (R2 of 0.91 and 0.87), which was
located near the head of the reference participant.
The CO2 exposure estimation by using a single stationary IAQ

monitor during sitting activities was not accurate (average
adjusted R²= 0.25 across all single monitors, Table 2). Further-
more, the PM2.5 and PM10 exposure estimations by using a single
OPC during standing activities were also not accurate (average
adjusted R² of 0.24 and 0.22 across all single OPCs, Table 2). The
results indicate that the single stationary IAQ monitoring
location recommended by standards and guidelines

Table 2. Adjusted R² value of MLR models for IAQ exposure estimation by using different numbers and combinations of stationary CO2 and PM
measurements during combined and separated activities (sitting and standing).

Number of
variables

IAQ stationary monitor placement Combined activitiesa Sittinga Standinga

CO2 PM2.5 PM10 CO2 PM2.5 PM10 CO2 PM2.5 PM10

1 Front edge of participant desk 0.326 0.516 0.495 0.26 0.61 0.58 0.579 0.068 0.073

Desk 0.292 0.671 0.731 0.24 0.77 0.82 0.517 0.215 0.224

Exhaust 1 0.291 0.841 0.803 0.24 0.91 0.87 0.514 0.442 0.363

2 Front edge of participant desk +
Desk

0.328 0.68 0.738 0.26 0.78 0.83 0.581 0.202 0.214

Front edge of participant desk +
Exhaust 1

0.328 0.855 0.831 0.26 0.92 0.90 0.584 0.501 0.376

Desk + Exhaust 1 0.29 0.843 0.819 0.23 0.91 0.89 0.512 0.433 0.371

3 Front edge of participant desk +
Desk + Exhaust 1

0.326 0.861 0.842 0.26 0.93 0.91 0.578 0.498 0.396

Bolded values have moderate or strong correlation (R2 > 0.5).
aAll models included participant number as one input variable
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[-
19, 20, 43] does not capture exposure well and the measure-
ments may not be reliable particularly when complex airflow
interactions exist in the space.
Using all three IAQ inputs (Front edge of participant desk + Desk

+ Exhaust 1) for estimating PM2.5 and PM10 exposure showed 2%
and 5% higher adjusted R2 for sitting activities, and 13% and 9%
higher adjusted R2 for standing activities relative to using single IAQ
input. This was not the case for CO2 exposure estimation, where
there was no difference between using single and multiple
variables. Further, we reported regression coefficients of the models
(Table S4) consisted of a single stationary IAQ measurement and
participant number as input variables with the best estimation
accuracy. The regression equations (Eqs. 1–3) are listed based on the
models (Table S4) composed with one stationary IAQ measurement
and participant number (partnum) as inputs. A negative correlation
between participant number and CO2 inhalation exposure was
observed, while a positive correlation between CO2 level at the
Front edge of participant desk and CO2 inhalation exposure was
detected during standing activities (Eq. 1). As indicated in Eq. (2) and
Eq. (3), two inputs (partnum, partexhaust) had a positive correlation
with output (inhalation exposure to PM2.5 and PM10) during sitting
activities. Interestingly, inhalation exposure to PM10 was more
dependent on the participant number than the stationary PM10

measurement at the ventilation exhaust, while the opposite aspect
was shown for inhalation exposure to PM2.5.

CO2; exposure ¼� 281:51partnum þ 0:829CO2; front edge of participant desk

þ 1983:328

(1)

PM2:5;exposure ¼ 0:172partnum þ 1:795PM2:5; exhaust � 0:007 (2)

PM10; exposure ¼ 2:497partnum þ 1:652PM10; exhaust þ 1:098 (3)

MLR models based on contextual measurements. We derived the
MLR models by using input variables obtained from PIRs installed at
three different placements; ceiling, wall, and below the participant
desk. Table 3 summarizes adjusted R² values of each model with
different combination of inputs under combined and separated sitting
and standing activities. The estimation accuracy did not show any
significant R² values throughout all proposedmodels, meaning that the
human presence/absence data is generally not effective in detecting
personal exposures. However, data obtained by all three PIRs was
moderately effective (R² > 0.5) in estimating inhalation exposure to CO2

during standing activities. Our results point towards conclusion that the
PIR alone is able to detect human presence in the space (see β= 0.26,
Table S5), but none of the three PIRs showed a sufficient ability to
estimate inhalation exposure solely.

MLR models based on physiological measurements. We also
examined MLR models composed of physiological measurements
from wearable wristband (E4), which included the skin tempera-
ture (Tskin), heart rate (HR), and resultant three-axis acceleration
(ACC) of the reference participant. Adjusted R² values of each
model under combined, sitting and standing activities are
presented in Table 4. In general, physiological measurements
gave poor estimate of inhalation exposures for the investigated
scenarios except the CO2 exposure in standing activities that had a
moderate accuracy (R² > 0.5). A discrepancy of estimation accuracy
between sitting and standing activities is aligned with the findings
of two experimental studies [44, 45] that indicated a complex
relationship of human physiological status and indoor CO2

concentration. Having more than one physiological parameter
could improve the estimation accuracy relative to single
measurement in some cases. For example, the model accuracy
for detecting PM2.5 and PM10 exposure by multiple inputs showed
5 and 10% increase in sitting activities and showed 10% increase
in standing activities in case of CO2 compared to the model with a

Table 3. Adjusted R² value of MLR models for IAQ exposure estimation by using different combinations of PIRs measurements during combined,
sitting, and standing activities.

Number of variables PIR measurement placements Combined activities Sitting Standing

CO2 PM2.5 PM10 CO2 PM2.5 PM10 CO2 PM2.5 PM10

1 Ceiling 0.294 0.004 0.003 0.241 0.008 0.007 0.505 −0.006 −0.004

Wall 0.288 −0.006 −0.006 0.247 0.002 0.002 0.568 0.002 −0.01

Below desk 0.296 0.011 0.017 0.247 0.019 0.026 0.526 −0.012 −0.016

2 Ceiling + Wall 0.292 0.000 0.000 0.25 0.005 0.005 0.561 −0.005 −0.01

Ceiling + Below desk 0.299 0.017 0.022 0.25 0.023 0.03 0.518 −0.022 −0.02

Wall + Below desk 0.297 0.01 0.015 0.277 0.015 0.023 0.57 −0.009 −0.021

3 Ceiling + Wall + Below desk 0.301 0.016 0.021 0.279 0.02 0.026 0.563 −0.018 −0.024

Bolded values have moderate correlation (R2 > 0.5).

Table 4. Adjusted R² value of MLR models for IAQ exposure estimation by using different combinations of wearable wristband measurements during
combined, sitting, and standing activities.

Number of
variables

Wearable wristband
parametersa

Combined activities Sitting Standing

CO2 PM2.5 PM10 CO2 PM2.5 PM10 CO2 PM2.5 PM10

1 Tskin 0.407 0.039 0.016 0.477 0.121 0.067 0.528 −0.015 −0.017

HR 0.3 −0.006 −0.006 0.237 0.001 0.000 0.54 −0.007 −0.003

ACC 0.288 −0.003 −0.002 0.235 0.005 0.005 0.506 −0.014 −0.017

2 Tskin + HR 0.459 0.04 0.014 0.475 0.118 0.062 0.594 −0.022 −0.019

Tskin + ACC 0.405 0.043 0.021 0.476 0.13 0.074 0.521 −0.031 −0.031

HR + ACC 0.3 −0.006 −0.004 0.234 0.001 0.002 0.537 −0.022 −0.016

3 Tskin + HR + ACC 0.457 0.043 0.018 0.474 0.127 0.07 0.589 −0.038 −0.032

Bolded values have moderate correlation (R2 > 0.5).
aTskin skin temperature, HR heart rate, ACC resultant acceleration (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ACC x2 þ ACC y2 þ ACC z2
p

)
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single input. However, overall model accuracy by physiological
inputs was still insufficient to estimate inhalation exposures.
Further, we reported regression coefficients of a model that best
estimated CO2 exposure (adjusted R²= 0.594) by physiological
inputs, where large β coefficient was shown in order of participant
number, Tskin, and HR (Table S6).

MLR models based on multiple parameter measurements. We
finally derived MLR models by combining stationary IAQ,
physiological (E4) and contextual (PIR) parameters and compared
the results with the models composed of a single parameter. We
examined the models under segregated activities (sitting and
standing), which was more advantageous in terms of model
accuracy relative to combined activities as previously noted in
“MLR models based on stationary IAQ measurements”. Adjusted R²
values of each model were reported with relevant input variables
listed in parentheses (Table 5). In case of sitting activities, the
estimation accuracy showed twofold (101%) increase by using
multiple parameters (IAQ+E4+PIR) compared to the model with a
single stationary CO2 measurement. When participants were
moving around, CO2 exposure estimation was better by integrat-
ing stationary CO2 measurements with wearable (Tskin, HR) and PIR
(PIR_Wall) measurement, however, the improvement was small
(4–6% increase).
The relevant inputs for PM2.5 and PM10 estimation during

standing activities were stationary PM measurements but did not
include any contextual or physiological indicators. During sitting
activities, however, physiological state (Tskin, HR) of the participant
was included as relevant input for PM exposure detection.
Particularly, the skin temperature (Tskin) was advantageous in
estimating PM10 exposure while heart rate (HR) was useful in
estimating both PM2.5 and PM10 exposures. By combining IAQ
with wearable and PIR measurements, adjusted R² for PM2.5 and
PM10 exposure estimation models slightly improved (3–6%
increase in sitting activities). During standing activities, having
two stationary monitors increased the estimation accuracy by 14%
compared to having a single OPC monitor. This increase, however,
has little relevance as the single IAQ input was sufficient to
accurately estimate the exposure.
Except a notable improvement (twofold increase) of using

combined parameters in CO2 exposure estimation, the increase of
model accuracy by combining the parameters was trivial. The
regression equations of the best models with combined input
parameters are reported as Eqs. (S1–S5). We also included
normality test of the final regression models (Fig. S7) in order to
make valid future inferences of the models. Lastly, we presented
additional regression models that used single and combined
parameters during combined (sitting + standing) activities
(Table S7). As expected, the best model accuracy for estimating
personal exposure to CO2, PM2.5 and PM10 was not apparent when
participants’ activities were mixed. This finding confirms the
importance of having contextual information, particularly occu-
pant activities, for evaluating personal exposures.

Study limitations
Our study has several limitations. Firstly, our findings are limited to
a handful of selections of office setups, activities, single air change
rate, and single room air distribution strategy, which means our
propositions may not be applicable to completely different
circumstances. Our models might have been different if the
exhaust vent was not positioned near the seated reference
participant, as evidenced by analyzing indoor air pollution and
correlation with breathing zone concentration between two
different placements of exhaust (Exhaust 1 and 2). Furthermore,
being limited to measuring personal exposure of one participant,
we cannot generalize expiratory characteristics (e.g., the geometry
of a person’s nose, lung capacity, the position of a head) to all
population. Physical intrusiveness of measurements to the

participants remains a weakness because it could have influenced
their movements. Lastly, experimental instruments were worn by
the reference participant with a real-time camera recording, which
would not be possible in a real-life scenario due to intrusiveness
and privacy issues [46, 47]. To tackle these limitations, one
promising technology is a novel camera-based human activity
detector algorithm named PifPaf [48] that gives information about
total number of participants and estimates the posture of
participants containing 17 joints, without violating privacy issues.

CONCLUSION
Considering the challenges of direct measurements of human
inhalation exposures, it is useful to explore the effectiveness of
alternative methods for approximating exposure to typical indoor
air pollutants. In a ventilated chamber with dynamic occupancy,
we deployed three different sensing techniques (stationary IAQ,
contextual and physiological measurements) to detect breathing
zone CO2, PM2.5, and PM10 concentrations.
The accuracy of estimating inhalation exposures was contingent

upon occupant number, activities, and positioning of sensors.
Firstly, occupant number was relevant in estimating exposures to
investigated air pollutants except the case of PM2.5 in standing
activities. A clear improvement of estimation accuracy was
observed by segregating data into sitting and standing activities;
the relative improvement was 9–60% during sitting compared to
combined activities. Vigorous standing activities had higher
correlation between stationary and breathing zone CO2 measure-
ment, attributed to reduced spatial air pollution gradients in the
chamber. On the contrary, dynamic activities resulted in reduced
correlation between stationary and breathing zone PM measure-
ments due to the highly episodic and localized emissions. The CO2

and PM measurement at ceiling-mounted ventilation exhaust
above the reference participant showed the highest correlation
with the breathing zone measurement regardless of activities.
Through regression analyses, the best IAQ sensor placement for

personal exposure estimation was the Front edge of participant
desk for CO2 and the ventilation exhaust for PM. Specifically, the
Front edge of the desk showed a moderate accuracy (adjusted
R2= 0.58) for CO2 inhalation exposure estimation of a standing
participant. The PM measurements at the exhaust showed the
substantial potential (adjusted R² > 0.8) as a proxy to detect
personal exposure to PM2.5 and PM10 of a seated participant. By
combining multiple inputs (environmental, physiological, and
contextual parameters), the model estimation on inhalation
exposure to CO2 improved by twofold during sitting activities,
while the improvement was limited in case of PM (~10%). Our
findings indicate that the personal exposure estimation could be
enhanced by possessing contextual information (e.g., body
posture and type of activity), although the improvement can be
trivial in specific cases.
This study contributes to broadening the knowledge of proxy

methods for detecting personal air pollution exposures under
dynamic occupancies, which goes beyond the existing investiga-
tions typically performed under the static conditions [15, 16, 42].
Our findings are novel since it involves contextual and physiolo-
gical parameters in the actual exposure estimation compared to
the previous studies that only investigated the correlation
between room occupancy information and exposures [26–28].
The practical recommendations on optimal monitor placement

indoors could help stakeholders better understand a real human
exposure to air pollutants and secure good IAQ in buildings.
Placing a single IAQ monitor at a proper location can be a practical
solution while minimizing the initial cost of monitor purchase and
its maintenance fee. However, combined monitoring strategies
(environmental, physiological, and contextual) could reduce
potential errors resulting from having one monitor installed at
suboptimal location. Further investigations should generalize the
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regression models under different space contexts. Future devel-
opments of automatic occupancy detections are needed to
develop a more robust and cost-effective approach for human
exposure detection and management.
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