Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differences in exposure to toxic and/or carcinogenic volatile organic compounds between Black and White cigarette smokers

Abstract

Objective

It is unclear why Black smokers in the United States have elevated risk of some tobacco-related diseases compared to White smokers. One possible causal mechanism is differential intake of tobacco toxicants, but results across studies are inconsistent. Thus, we examined racial differences in biomarkers of toxic volatile organic compounds (VOCs) present in tobacco smoke.

Method

We analyzed baseline data collected from 182 Black and 184 White adult smokers who participated in a randomized clinical trial in 2013–2014 at 10 sites across the United States. We examined differences in urinary levels of ten VOC metabolites, total nicotine equivalents (TNE), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), controlling for covariates such as cigarettes per day (CPD), as well as differences in VOCs per TNE to assess the extent to which tobacco exposure, and not metabolic factors, accounted for racial differences.

Results

Concentration of metabolites of acrolein, acrylonitrile, ethylene oxide, and methylating agents were significantly higher in Blacks compared to Whites when controlled for covariates. Other than the metabolite of methylating agents, VOCs per TNE did not differ between Blacks and Whites. Concentrations of TNE/CPD and VOCs/CPD were significantly higher in Blacks. Menthol did not contribute to racial differences in VOC levels.

Conclusions

For a given level of CPD, Black smokers likely take in higher levels of acrolein, acrylonitrile, and ethylene oxide than White smokers. Our findings are consistent with Blacks taking in more nicotine and toxicants per cigarette smoked, which may explain their elevated disease risk relative to other racial groups.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. U.S. National Cancer Institute. A Socioecological Approach to Addressing TobaccoRelated Health Disparities. National Cancer Institute Tobacco Control Monograph 22. NIH Publication No. 17-CA-8035A. Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute; 2017.

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Jacobs EJ, Newton CC, Feskanich D, Freedman ND, Prentice RL, et al. Deaths due to cigarette smoking for 12 smoking-related cancers in the United States. JAMA Intern Med. 2015;175:1574–6.

    Article  PubMed  Google Scholar 

  4. Jamal A, Phillips E, Gentzke AS, Homa DM, Babb SD, King BA, et al. Current cigarette smoking among adults—United States, 2016. MMWR. 2018;67:53.

    PubMed  PubMed Central  Google Scholar 

  5. Trinidad DR, Perez-Stable EJ, Emery SL, White MM, Grana RA, Messer KS. Intermittent and light daily smoking across racial/ethnic groups in the United States. Nicotine Tob Res. 2009;11:203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Trinidad DR, Perez-Stable EJ, White MM, Emery SL, Messer K. A nationwide analysis of US racial/ethnic disparities in smoking behaviors, smoking cessation, and cessation-related factors. Am J Public Health. 2011;101:699.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harris RE, Zang EA, Anderson JI, Wynder EL. Race and sex differences in lung cancer risk associated with cigarette smoking. Int J Epidemiol. 1993;22:592–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gadgeel SM, Severson RK, Kau Y, Graff J, Weiss LK, Kalemkerian GP. Impact of race in lung cancer: analysis of temporal trends from a surveillance, epidemiology, and end results database. Chest. 2001;120:55–63.

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz AG, Swanson GM. Lung carcinoma in African Americans and whites. Cancer. 1997;79:45–52.

    Article  CAS  PubMed  Google Scholar 

  10. Stellman SD, Chen Y, Muscat JE, Djordjevic IV, Richie JP, Lazarus P, et al. Lung cancer risk in white and black Americans. Ann Epidemiol. 2003;13:294–302.

    Article  PubMed  Google Scholar 

  11. Haiman CA, Stram DO, Wilkens LR, Pike MC, Kolonel LN, Henderson BE, et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med. 2006;354:333–42.

    Article  CAS  PubMed  Google Scholar 

  12. Stram DO, Park S, Haiman CA, Murphy SE, Patel Y, Hecht SS, et al. Racial/ethnic differences in lung cancer incidence in the multiethnic cohort study: an update. J Natl Cancer Inst. 2019. https://doi.org/10.1093/jnci/djy206.

  13. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. Circulation. 2016;133:e38–360.

    PubMed  Google Scholar 

  14. Pérez-Stable EJ, Herrera B, Jacob P, Benowitz NL. Nicotine metabolism and intake in black and white smokers. JAMA. 1998;280:152–6.

    Article  PubMed  Google Scholar 

  15. Murphy SE, Park SS, Thompson EF, Wilkens LR, Patel Y, Stram DO, et al. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups. Carcinogenesis. 2014;35:2526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park SL, Carmella SG, Ming X, Vielguth E, Stram DO, Le Marchand L, et al. Variation in levels of the lung carcinogen NNAL and its glucuronides in the urine of cigarette smokers from five ethnic groups with differing risks for lung cancer. Cancer Epidemiol Biomarkers Prev. 2015;24:561–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998;11:559–603.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan JM, Koh WP, Murphy SE, Fan Y, Wang R, Carmella SG, et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res. 2009;69:2990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rostron B. NNAL exposure by race and menthol cigarette use among US smokers. Nicotine Tob Res. 2013;15:950–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.

    Article  CAS  PubMed  Google Scholar 

  21. Roemer E, Schramke H, Weiler H, Buettner A, Kausche S, Weber S, et al. Mainstream smoke chemistry and in vitro and in vivo toxicity of the reference cigarettes 3R4F and 2R4F. Contrib Tob Res. 2014;25:316–35.

    Google Scholar 

  22. Schaller JP, Keller D, Poget L, Pratte P, Kaelin E, McHugh D, et al. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul Toxicol Pharmacol. 2016;81 (Suppl 2):S27–47.

    Article  CAS  PubMed  Google Scholar 

  23. Fowles J, Dybing E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control. 2003;12:424–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie J, Marano KM, Wilson CL, Liu H, Gan H, Xie F, et al. A probabilistic risk assessment approach used to prioritize chemical constituents in mainstream smoke of cigarettes sold in China. Regul Toxicol Pharmacol. 2012;62:355–62.

    Article  CAS  PubMed  Google Scholar 

  25. Haussmann H-J. Use of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem Res Toxicol. 2012;25:794–810.

    Article  CAS  PubMed  Google Scholar 

  26. Perbellini L, Veronese N, Princivalle A. Mercapturic acids in the biological monitoring of occupational exposure to chemicals. J Chromatogr B. 2002;781:269–90.

    Article  CAS  Google Scholar 

  27. Hoffmann D, Brunnemann KD, Hoffmann I. Significance of benzene in tobacco carcinogenesis. In: Myron A. Mehlman editor. Advances in modern environmental toxicology benzene: occupational and environmental hazards-scientific update. Princeton: Princeton Scientific Publishing Co; 1989.

  28. Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of 1, 3-butadiene, ethylene oxide, vinyl chloride, vinyl fluoride, and vinyl bromide. Lancet Oncol. 2007;8:679–80.

  29. DeJarnett N, Conklin DJ, Riggs DW, Myers JA, O’Toole TE, Hamzeh I, et al. Acrolein exposure is associated with increased cardiovascular disease risk. J Am Heart Assoc. 2014;3:e000934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ding YS, Blount BC, Valentin-Blasini L, Applewhite HS, Xia Y, Watson CH, et al. Simultaneous determination of six mercapturic acid metabolites of volatile organic compounds in human urine. Chem Res Toxicol. 2009;22:1018–25.

    Article  CAS  PubMed  Google Scholar 

  31. Haiman CA, Patel YM, Stram DO, Carmella SG, Chen M, Wilkens LR, et al. Benzene uptake and glutathione S-transferase T1 status as determinants of S-phenylmercapturic acid in cigarette smokers in the Multiethnic Cohort. PloS ONE. 2016;11:e0150641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Park SL, Carmella SG, Chen M, Patel Y, Stram DO, Haiman CA, et al. Mercapturic acids derived from the toxicants acrolein and crotonaldehyde in the urine of cigarette smokers from five ethnic groups with differing risks for lung cancer. PloS ONE. 2015;10:e0124841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jain RB. Distributions of selected urinary metabolites of volatile organic compounds by age, gender, race/ethnicity, and smoking status in a representative sample of US adults. Environ Toxicol Pharmacol. 2015;40:471–9.

    Article  CAS  PubMed  Google Scholar 

  34. Roethig HJ, Munjal S, Feng S, Liang Q, Sarkar M, Walk R-A, et al. Population estimates for biomarkers of exposure to cigarette smoke in adult US cigarette smokers. Nicotine Tob Res. 2009;11:1216–25.

    Article  CAS  PubMed  Google Scholar 

  35. Donny EC, Denlinger RL, Tidey JW, Koopmeiners JS, Benowitz NL, Vandrey RG, et al. Randomized trial of reduced-nicotine standards for cigarettes. N Engl J Med. 2015;373:1340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom Test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991;86:1119–27.

    Article  CAS  PubMed  Google Scholar 

  37. Dempsey D, Tutka P, Jacob P, Allen F, Schoedel K, Tyndale RF, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;76:64–72.

    Article  CAS  PubMed  Google Scholar 

  38. Murphy SE, Wickham KM, Lindgren BR, Spector LG, Joseph A. Cotinine and trans 3 ‘-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. J Expo Sci Environ Epidemiol. 2013;23:513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carmella SG, Ming X, Olvera N, Brookmeyer C, Yoder A, Hecht SS. High throughput liquid and gas chromatography–tandem mass spectrometry assays for tobacco-specific nitrosamine and polycyclic aromatic hydrocarbon metabolites associated with lung cancer in smokers. Chem Res Toxicol. 2013;26:1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacob P, Raddaha AHA, Dempsey D, Havel C, Peng M, Yu L, et al. Comparison of nicotine and carcinogen exposure with water pipe and cigarette smoking. Cancer Epidemiol Biomarkers Prev. 2013;22:765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alwis KU, Blount BC, Britt AS, Patel D, Ashley DL. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta. 2012;750:152–60.

    Article  CAS  PubMed  Google Scholar 

  42. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the US population: Implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113:192–200.

    Article  CAS  PubMed  Google Scholar 

  43. O’Brien KM, Upson K, Cook NR, Weinberg CR. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect. 2016;124:220–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hazari MS, Griggs J, Winsett DW, Haykal-Coates N, Ledbetter A, Costa DL, et al. A single exposure to acrolein desensitizes baroreflex responsiveness and increases cardiac arrhythmias in normotensive and hypertensive rats. Cardiovasc Toxicol. 2014;14:52–63.

    Article  CAS  PubMed  Google Scholar 

  45. Ismahil MA, Hamid T, Haberzettl P, Gu Y, Chandrasekar B, Srivastava S, et al. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2011;301:H2050–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng Z, Hu W, Hu Y, Tang M-s. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA. 2006;103:15404–9.

  47. Denissenko MF, Pao A, Tang M-s, Pfeifer GP. Preferential formation of benzo [a] pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274:430–2.

    Article  CAS  PubMed  Google Scholar 

  48. Smith C, Perfetti T, Rumple M, Rodgman A, Doolittle D. “IARC Group 2B carcinogens” reported in cigarette mainstream smoke. Food Chem Toxicol. 2001;39:183–205.

    Article  CAS  PubMed  Google Scholar 

  49. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 97. 1, 3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC Monogr Eval Carcinog Risks Hum. 2008;97:3.

    PubMed Central  Google Scholar 

  50. Marsh GM, Youk AO, Collins JJ. Reevaluation of lung cancer risk in the acrylonitrile cohort study of the National Cancer Institute and the National Institute for Occupational Safety and Health. Scand J Work Environ Health. 2001;27:5–13.

    Article  CAS  PubMed  Google Scholar 

  51. Scélo G, Constantinescu V, Csiki I, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, et al. Occupational exposure to vinyl chloride, acrylonitrile and styrene and lung cancer risk (Europe). Cancer Causes Control. 2004;15:445–52.

    Article  PubMed  Google Scholar 

  52. Arrazola RA, Singh T, Corey CG, Husten CG, Neff LJ, Apelberg BJ, et al. Tobacco use among middle and high school students—United States, 2011–4. MMWR. 2015;64:381–5.

    PubMed  PubMed Central  Google Scholar 

  53. Scherer G, Urban M, Hagedorn H-W, Serafin R, Feng S, Kapur S, et al. Determination of methyl-, 2-hydroxyethyl-and 2-cyanoethylmercapturic acids as biomarkers of exposure to alkylating agents in cigarette smoke. J Chromatogr B. 2010;878:2520–8.

    Article  CAS  Google Scholar 

  54. Lim U, Song MA. Dietary and lifestyle factors of DNA methylation. In: Dumitrescu R, Verma M, editors. Cancer Epigenetics. Methods in Molecular Biology (Methods and Protocols), Vol 863, Totowa, NJ: Humana Press; 2012.

  55. Gee GC, Payne-Sturges DC. Environmental health disparities: a framework integrating psychosocial and environmental concepts. Environ Health Perspect. 2004;112:1645.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robertson KD. DNA methylation and human disease. Nat. Rev Genet. 2005;6:597.

    Article  CAS  PubMed  Google Scholar 

  57. Miller RL, Ho S-m. Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med. 2008;177:567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson HH, Wiencke JK, Christiani DC, Cheng T, Zuo Z-F, Schwartz BS, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis. 1995;16:1243–6.

    Article  CAS  PubMed  Google Scholar 

  59. Dougherty D, Garte S, Barchowsky A, Zmuda J, Taioli E. NQO1, MPO, CYP2E1, GSTT1 and GSTM1 polymorphisms and biological effects of benzene exposure—a literature review. Toxicol Lett. 2008;182:7–17.

  60. Charles FS, Cook C, Clayton P. The linear relationship between cigarette tar and nicotine yields: regulatory implications for smoke constituent ratios. Regul Toxicol Pharmacol. 2011;59:143–8.

    Article  CAS  Google Scholar 

  61. Tobacco Products Scientific Advisory Committee. Menthol cigarettes and public health: review of the scientific evidence and recommendations. Washington, DC: US Food and Drug Administration; 1974.

  62. Wei B, Wang L, Blount BC. Analysis of cannabinoids and their metabolites in human urine. Anal Chem. 2015;87:10183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. St.Helen G, Jacob P 3rd, Peng M, Dempsey DA, Hammond SK, Benowitz NL. Intake of toxic and carcinogenic volatile organic compounds from secondhand smoke in motor vehicles. Cancer Epidemiol Biomarkers Prev. 2014;23:2774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pierce JP, White MM, Messer K. Changing age-specific patterns of cigarette consumption in the United States, 1992–2002: association with smoke-free homes and state-level tobacco control activity. Nicotine Tob Res. 2009;11:171–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lisa Yu, Kristina Bello, and Lawrence Chan for lab analyses, and all members of the Center for the Evaluation of Nicotine in Cigarettes for data collection. This work was supported by grant U54 DA031659 (ECD/DKH) from the National Institute on Drug Abuse and the Food and Drug Administration Center for Tobacco Products; grants DA02277 (NLB), DA012393 (Reese Jones, not a co-author), and R25DA035163 (James Sorensen, not a co-author) from the National Institute on Drug Abuse; grant P30AG15272 (EJP-S) from the National Institute on Aging; grant S10RR026437 from the National Center for Research Resources; grant 22FT-0067 (GStH) from the California Tobacco Related Disease Research Program and a Resource Allocation Program (RAP) grant from the University of California, San Francisco (GStH). The contents and views in this manuscript are those of the authors and should not be construed to represent the views of the National Institutes of Health, the Food and Drug Administration, or any of the sponsoring organizations or agencies of the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon St.Helen.

Ethics declarations

Conflict of interest

NLB is a consultant to Pfizer and Achieve Life Sciences, companies that market or are developing smoking cessation medications, and has served as a paid expert witness in litigation against tobacco companies. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St.Helen, G., Benowitz, N.L., Ko, J. et al. Differences in exposure to toxic and/or carcinogenic volatile organic compounds between Black and White cigarette smokers. J Expo Sci Environ Epidemiol 31, 211–223 (2021). https://doi.org/10.1038/s41370-019-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-019-0159-9

Keywords

Search

Quick links