Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal concentrations in pregnant women and neonates from informal electronic waste recycling

Abstract

Electronic waste (e-waste) is the fastest growing solid waste stream worldwide and mostly ends up in developing countries where residents use primitive methods for recycling. The most infamous e-waste recycling town, Guiyu in Southeast China, has been recycling since the mid-1990s. E-waste contains several harmful chemicals, including lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn). In 2011–12, the e-waste Recycling Exposures and Community Health (e-REACH) Study enrolled 634 pregnant women living in Guiyu and Haojiang, a control site, both in Shantou, China. The women completed a questionnaire and gave maternal blood, cord blood, and maternal urine, which were analyzed for Pb, Cd, Cr, and Mn. Maternal blood Pb, Cd, and Cr concentrations were significantly higher in Guiyu compared to Haojiang. In Guiyu, the geometric mean of Pb concentration in maternal blood was 6.66 µg/dL (range: 1.87–27.09 µg/dL) and was 1.74-fold greater than in Haojiang (95% CI: 1.60, 1.89). In cord blood, Pb concentration was 1.53-fold higher in Guiyu (95% CI: 1.38, 1.68). In maternal urine, Cd (ratio: 2.15, 95% CI: 1.72, 2.69) and Mn (ratio: 2.60, 95% CI: 2.04, 3.31) concentrations were significantly higher in Guiyu in comparison to Haojiang. In conclusion, pregnant women in Guiyu were at risk for increased exposure to heavy metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. UNEP. UNEP E-waste volume I: inventory assessment manual. Osaka/Shiga; UNEP, DTIE, IETC: 2007.

  2. Perkins DN, Brune Drisse MN, Nxele T, Sly PD. E-waste: a global hazard. Ann Glob Health. 2014;80:286–95.

    Article  Google Scholar 

  3. Rucevska I, Nellemann C, Isarin N, Yang W, Liu N, Yu K, et al. Waste crime - waste risks: gaps in meeting the global waste challenge. UNEP; United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, 2015 https://www.grida.no.

  4. Chen A, Dietrich KN, Huo X, Ho SM. Developmental neurotoxicants in e-waste: an emerging health concern. Environ Health Perspect. 2011;119:431–8.

    Article  Google Scholar 

  5. Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman AL, Brune MN, et al. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect. 2016;124:550–5.

    Article  CAS  Google Scholar 

  6. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, et al. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. 2013;1:e350–61.

    Article  Google Scholar 

  7. Lemieux P, Stewart E, Hall R, Bruce K, Brenman J, Roselli J. Pilot-scale studies on the incineration of electronics industry waste. International Thermal Treatment Technology Conference (IT3). 2003; Orlando.

  8. Bellinger DC. Lead. Pediatrics. 2004;113:1016–22.

    PubMed  Google Scholar 

  9. Goyer RA, Mahaffey KR. Susceptibility to lead toxicity. Environ Health Perspect. 1972;2:73–80.

    Article  CAS  Google Scholar 

  10. ATSDR. Draft toxicological profile for cadmium. Atlanta, GA: US Department of Health and Human Services; 2008.

    Google Scholar 

  11. ATSDR. Public health statement: cadmium. 2015 https://www.atsdr.cdc.gov/PHS/PHS.asp?id=46&tid=15.

  12. ATSDR. Public health statement: hexavalent chromium. 2015 https://www.atsdr.cdc.gov/PHS/PHS.asp?id=60&tid=17.

  13. Ciesielski T, Weuve J, Bellinger DC, Schwartz J, Lanphear B, Wright RO. Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environ Health Perspect. 2012;120:758–63.

    Article  CAS  Google Scholar 

  14. Tian LL, Zhao YC, Wang XC, Gu JL, Sun ZJ, Zhang YL, et al. Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol Trace Elem Res. 2009;132:51–9.

    Article  CAS  Google Scholar 

  15. Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Asp Med. 2005;26:353–62.

    Article  CAS  Google Scholar 

  16. ATSDR. Public Health Statement for Manganese. In: Registry AfTSaD, editor. CDC; 2015.

  17. ATSDR. Toxicological Profile for Manganese. Atlanta; 2012.

  18. Standridge JS, Bhattacharya A, Succop P, Cox C, Haynes E. Effect of chronic low level manganese exposure on postural balance: a pilot study of residents in southern Ohio. J Occup Environ Med. 2008;50:1421–9.

    Article  CAS  Google Scholar 

  19. Rugless F, Bhattacharya A, Succop P, Dietrich KN, Cox C, Alden J, et al. Childhood exposure to manganese and postural instability in children living near a ferromanganese refinery in Southeastern Ohio. Neurotoxicol Teratol. 2014;41:71–9.

    Article  CAS  Google Scholar 

  20. Haynes EN, Sucharew H, Kuhnell P, Alden J, Barnas M, Wright RO, et al. Manganese exposure and neurocognitive outcomes in rural school-age children: The Communities Actively Researching Exposure Study (Ohio, USA). Environ Health Perspect. 2015;123:1066–71.

    Article  CAS  Google Scholar 

  21. Vollet K, Haynes EN, Dietrich KN. Manganese exposure and cognition across the lifespan: contemporary review and argument for biphasic dose-response health effects. Curr Environ Health Rep. 2016;3:392–404.

    Article  CAS  Google Scholar 

  22. UNEP. E-waste, the hidden side of it equipment’s manufacturing and use. Environment Alert Bulletin [Internet]. 2005; 5. http://www.grid.unep.ch/product/publication/download/ew_ewaste.en.pdf. Accessed 23 Jan 2010.

  23. UNEP. Draft technical guidelines on transboundary movements of e-waste and used electrical and electronic eqiupment, in particular regarding the distinction between waste and non-waste under the basel convention. 2012 http://www.basel.int/Implementation/Ewaste/TechnicalGuidelines/DevelopmentofTGs/tabid/2377/Default.aspx.

  24. Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung AO, et al. Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling. Environ Pollut. 2007;149:131–40.

    Article  CAS  Google Scholar 

  25. Wong CS, Duzgoren-Aydin NS, Aydin A, Wong MH. Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ Pollut. 2007;148:62–72.

    Article  CAS  Google Scholar 

  26. Wong CS, Wu SC, Duzgoren-Aydin NS, Aydin A, Wong MH. Trace metal contamination of sediments in an e-waste processing village in China. Environ Pollut. 2007;145:434–42.

    Article  CAS  Google Scholar 

  27. Wang JP, Guo XK. Impact of electronic wastes recycling on environmental quality. Biomed Environ Sci. 2006;19:137–42.

    CAS  PubMed  Google Scholar 

  28. Yu XZ, Gao Y, Wu SC, Zhang HB, Cheung KC, Wong MH. Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies. Chemosphere. 2006;65:1500–9.

    Article  CAS  Google Scholar 

  29. Wang D, Cai Z, Jiang G, Leung A, Wong MH, Wong WK. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility. Chemosphere. 2005;60:810–6.

    Article  CAS  Google Scholar 

  30. Leung AO, Luksemburg WJ, Wong AS, Wong MH. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environ Sci Technol. 2007;41:2730–7.

    Article  CAS  Google Scholar 

  31. Luo Q, Wong M, Cai Z. Determination of polybrominated diphenyl ethers in freshwater fishes from a river polluted by e-wastes. Talanta. 2007;72:1644–9.

    Article  CAS  Google Scholar 

  32. Deng WJ, Zheng JS, Bi XH, Fu JM, Wong MH. Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China. Environ Int. 2007;33:1063–9.

    Article  CAS  Google Scholar 

  33. Li H, Yu L, Sheng G, Fu J, Peng P. Severe PCDD/F and PBDD/F pollution in air around an electronic waste dismantling area in China. Environ Sci Technol. 2007;41:5641–6.

    Article  CAS  Google Scholar 

  34. Leung AO, Duzgoren-Aydin NS, Cheung KC, Wong MH. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol. 2008;42:2674–80.

    Article  CAS  Google Scholar 

  35. Guo Y, Huang C, Zhang H, Dong Q. Heavy metal contamination from electronic waste recycling at Guiyu, Southeastern China. J Environ Qual. 2009;38:1617–26.

    Article  CAS  Google Scholar 

  36. Huo X, Peng L, Xu X, Zheng L, Qiu B, Qi Z, et al. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ Health Perspect. 2007;115:1113–7.

    Article  CAS  Google Scholar 

  37. Zheng L, Wu K, Li Y, Qi Z, Han D, Zhang B, et al. Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ Res. 2008;108:15–20.

    Article  CAS  Google Scholar 

  38. Li Y, Xu X, Liu J, Wu K, Gu C, Shao G, et al. The hazard of chromium exposure to neonates in Guiyu of China. Sci Total Environ. 2008;403:99–104.

    Article  CAS  Google Scholar 

  39. Li Y, Xu X, Wu K, Chen G, Liu J, Chen S, et al. Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China. J Environ Monit. 2008;10:1233–8.

    Article  CAS  Google Scholar 

  40. Wu K, Xu X, Liu J, Guo Y, Li Y, Huo X. Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. Environ Sci Technol. 2010;44:813–9.

    Article  CAS  Google Scholar 

  41. Li Y, Huo X, Liu J, Peng L, Li W, Xu X. Assessment of cadmium exposure for neonates in Guiyu, an electronic waste pollution site of China. Environ Monit Assess. 2011;177:343–51.

    Article  CAS  Google Scholar 

  42. Guo Y, Huo X, Li Y, Wu K, Liu J, Huang J, et al. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci Total Environ. 2010;408:3113–7.

    Article  CAS  Google Scholar 

  43. Goyer RA. Transplacental transport of lead. Environ Health Perspect. 1990;89:101–5.

    Article  CAS  Google Scholar 

  44. Zheng XB, Xu XJ, Yekeen TA, Zhang YL, Chen AM, Kim SS, et al. Ambient air heavy metals in PM2.5 and potential human health risk assessment in an informal electronic-waste recycling site of China. Aerosol Air Qual Res. 2016;16:388–97.

    Article  CAS  Google Scholar 

  45. Yekeen TA, Xu X, Zhang Y, Wu Y, Kim S, Reponen T, et al. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China. Environ Sci Pollut Res Int. 2016;23:17511–24.

    Article  CAS  Google Scholar 

  46. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    Article  Google Scholar 

  47. Wu K, Xu X, Peng L, Liu J, Guo Y, Huo X. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ Int. 2012;48:1–8.

    Article  Google Scholar 

  48. Li B, Xu X, Zhu Y, Cao J, Zhang Y, Huo X. Neonatal phthalate ester exposure induced placental MTs, FATP1 and HFABP mRNA expression in two districts of southeast China. Sci Rep. 2016;6:21004.

    Article  CAS  Google Scholar 

  49. Xu X, Yang H, Chen A, Zhou Y, Wu K, Liu J, et al. Birth outcomes related to informal e-waste recycling in Guiyu, China. Reprod Toxicol. 2012;33:94–8.

    Article  Google Scholar 

  50. Zhang Y, Xu X, Chen A, Davuljigari CB, Zheng X, Kim SS, et al. Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod Toxicol. 2018;75:49–55.

    Article  CAS  Google Scholar 

  51. Zeng X, Xu X, Boezen HM, Huo X. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere. 2016;148:408–15.

    Article  CAS  Google Scholar 

  52. Yang H, Huo X, Yekeen TA, Zheng Q, Zheng M, Xu X. Effects of lead and cadmium exposure from electronic waste on child physical growth. Environ Sci Pollut Res Int. 2013;20:4441–7.

    Article  CAS  Google Scholar 

  53. Succop PA, Clark S, Chen M, Galke W. Imputation of data values that are less than a detection limit. J Occup Environ Hyg. 2004;1:436–41.

    Article  CAS  Google Scholar 

  54. CDC. Preventing lead poisoning in young children. Center for Disease Control and Prevention: Atlanta; 1991.

  55. ACCLPP. Low level lead exposure harms children: a renewed call for primary prevention. Center for Disease Control and Prevention: Atlanta; 2012.

  56. Liu W, Huo X, Liu D, Zeng X, Zhang Y, Xu X. S100beta in heavy metal-related child attention-deficit hyperactivity disorder in an informal e-waste recycling area. Neurotoxicology. 2014;45:185–91.

    Article  CAS  Google Scholar 

  57. Liu J, Xu X, Wu K, Piao Z, Huang J, Guo Y, et al. Association between lead exposure from electronic waste recycling and child temperament alterations. Neurotoxicology. 2011;32:458–64.

    Article  Google Scholar 

  58. Pediatrics AAo. Pediatric environmental health. 3rd ed. Elk Grove Village, IL: American Academy of Pediatrics; 2012.

    Google Scholar 

  59. Ni W, Chen Y, Huang Y, Wang X, Zhang G, Luo J, et al. Hair mercury concentrations and associated factors in an electronic waste recycling area, Guiyu, China. Environ Res. 2014;128:84–91.

    Article  CAS  Google Scholar 

  60. Huang Y, Ni W, Chen Y, Wang X, Zhang J, Wu K. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China. Environ Sci Pollut Res Int. 2015;22:7112–9.

    Article  CAS  Google Scholar 

  61. Amaral JH, Rezende VB, Quintana SM, Gerlach RF, Barbosa F Jr., Tanus-Santos JE. The relationship between blood and serum lead levels in peripartum women and their respective umbilical cords. Basic Clin Pharmacol Toxicol. 2010;107:971–5.

    Article  CAS  Google Scholar 

  62. Taylor CM, Golding J, Hibbeln J, Emond AM. Environmental factors predicting blood lead levels in pregnant women in the UK: the ALSPAC study. PLoS ONE. 2013;8:e72371.

    Article  CAS  Google Scholar 

  63. Aylward LL, Hays SM, Kirman CR, Marchitti SA, Kenneke JF, English C, et al. Relationships of chemical concentrations in maternal and cord blood: a review of available data. J Toxicol Environ Health B Crit Rev. 2014;17:175–203.

    Article  CAS  Google Scholar 

  64. Chen Z, Myers R, Wei T, Bind E, Kassim P, Wang G, et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J Expo Sci Environ Epidemiol. 2014;24:537–44.

    Article  CAS  Google Scholar 

  65. Ziaee H, Daniel J, Datta AK, Blunt S, McMinn DJ. Transplacental transfer of cobalt and chromium in patients with metal-on-metal hip arthroplasty: a controlled study. J Bone Jt Surg Br. 2007;89:301–5.

    Article  CAS  Google Scholar 

  66. Arbuckle TE, Liang CL, Morisset AS, Fisher M, Weiler H, Cirtiu CM, et al. Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study. Chemosphere. 2016;163:270–82.

    Article  CAS  Google Scholar 

  67. Zota AR, Ettinger AS, Bouchard M, Amarasiriwardena CJ, Schwartz J, Hu H, et al. Maternal blood manganese levels and infant birth weight. Epidemiology. 2009;20:367–73.

    Article  Google Scholar 

  68. Gundacker C, Hengstschlager M. The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr. 2012;162:201–6.

    Article  Google Scholar 

  69. Wang N, Chen C, Nie X, Han B, Li Q, Chen Y, et al. Blood lead level and its association with body mass index and obesity in China - results from SPECT-China study. Sci Rep. 2015;5:18299.

    Article  CAS  Google Scholar 

  70. McMichael AJ, Vimpani GV, Robertson EF, Baghurst PA, Clark PD. The Port Pirie cohort study: maternal blood lead and pregnancy outcome. J Epidemiol Community Health. 1986;40:18–25.

    Article  CAS  Google Scholar 

  71. Xie X, Ding G, Cui C, Chen L, Gao Y, Zhou Y, et al. The effects of low-level prenatal lead exposure on birth outcomes. Environ Pollut. 2013;175:30–4.

    Article  CAS  Google Scholar 

  72. Rabito FA, Kocak M, Werthmann DW, Tylavsky FA, Palmer CD, Parsons PJ. Changes in low levels of lead over the course of pregnancy and the association with birth outcomes. Reprod Toxicol. 2014;50:138–44.

    Article  CAS  Google Scholar 

  73. Liu J, Gao D, Chen Y, Jing J, Hu Q, Chen Y. Lead exposure at each stage of pregnancy and neurobehavioral development of neonates. Neurotoxicology. 2014;44:1–7.

    Article  Google Scholar 

  74. Taylor CM, Tilling K, Golding J, Emond AM. Low level lead exposure and pregnancy outcomes in an observational birth cohort study: dose-response relationships. BMC Res Notes. 2016;9:291.

    Article  Google Scholar 

  75. Taylor CM, Golding J, Emond AM. Adverse effects of maternal lead levels on birth outcomes in the ALSPAC study: a prospective birth cohort study. BJOG. 2015;122:322–8.

    Article  CAS  Google Scholar 

  76. Kippler M, Tofail F, Gardner R, Rahman A, Hamadani JD, Bottai M, et al. Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study. Environ Health Perspect. 2012;120:284–9.

    Article  CAS  Google Scholar 

  77. Huang K, Li H, Zhang B, Zheng T, Li Y, Zhou A, et al. Prenatal cadmium exposure and preterm low birth weight in China. J Expo Sci Environ Epidemiol. 2016;27:491–6.

    Article  Google Scholar 

  78. Yang J, Huo W, Zhang B, Zheng T, Li Y, Pan X, et al. Maternal urinary cadmium concentrations in relation to preterm birth in the Healthy Baby Cohort Study in China. Environ Int. 2016;94:300–6.

    Article  CAS  Google Scholar 

  79. Johnston JE, Valentiner E, Maxson P, Miranda ML, Fry RC. Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PLoS ONE. 2014;9:e109661.

    Article  Google Scholar 

  80. Standaert M. China’s notorious E-waste village disappears almost overnight. Seattle, WA: Basal Action Network; 2015. http://www.ban.org/news/2015/12/17/chinas-notorious-e-waste-village-disappears-almost-overnight.

  81. Lui K. You’ll never believe where your old computer could end up after you hand it in for recycling. Time; 2016.

  82. Hopson E, Puckett J. Scam recycling: e-dumping on Asia by US recyclers. Seattle, WA: Basel Action Network; 2016 http://wiki.ban.org/images/1/12/ScamRecyclingReport-web.pdf.

    Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the National Institutes of Health/National Institute of Environmental Health Sciences (NIEHS) grants RC4ES019755, T32ES010957, P30 ES006096, and the Project of International Cooperation and Innovation Platform in Guangdong Universities (2013gjhz0007). The authors also extend thanks to all the participants in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Huo or Aimin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Xu, X., Zhang, Y. et al. Metal concentrations in pregnant women and neonates from informal electronic waste recycling. J Expo Sci Environ Epidemiol 29, 406–415 (2019). https://doi.org/10.1038/s41370-018-0054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-018-0054-9

Keywords

This article is cited by

Search

Quick links