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Gap junction-mediated cell-to-cell communication in oral
development and oral diseases: a concise review of research
progress
Wenjing Liu1, Yujia Cui1, Jieya Wei1, Jianxun Sun1, Liwei Zheng1 and Jing Xie 1

Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and
intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane
contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to
pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to
the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral
development and disease. In this review, the current progress in understanding the background of connexins and the functions of
gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and
maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions.
Knowledge of this pattern of cell–cell communication is required for a better understanding of oral diseases. With the ever-
increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane
channels in various oral diseases and maxillofacial dysplasia.
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INTRODUCTION
Cell–cell communication is vital for cell differentiation, morpho-
genesis, cell growth and homoeostasis in multicellular organisms.1

It was described as “the music that the nucleus hears”, and once it
is dissonant, abnormal communication between cells may disrupt
biological processes.2 The indispensable components of cell–cell
communication include tight junctions, anchoring junctions
(adherens, desmosomes, focal adhesions and hemidesmosomes)
and communication junctions (gap junctions, pannexins, ion
channels, and chemical synapses).1 Gap junctions are clusters of
intercellular channels facilitating a direct connection between the
cytoplasm of two neighbouring cells to mediate intercellular
communication.3 These channels are formed by channel-forming
proteins that are densely packed into spatial microdomains of the
plasma membrane. Three families of channel-forming proteins
have been identified, i.e., innexins, connexins and pannexins,
among which innexins are located in the protostome and the
other two families are present in deuterostomes. The pannexin
family is considered a special type of channel-forming proteins
that functions as a hemichannel.4 The connexin family exists in the
form of hemichannels and assembles into gap junctions in
vertebrates. In 1952, Weidman described gap junctions in the
myocardium, and thereafter Furshpan and Potter detected these
in neurons.5,6 Currently, 21 connexins have been identified in
humans and 20 have been detected in the mouse genome. Gap
junctions play pivotal roles in a wide range of physiological
processes, including electrical activation of the heart,7 neuronal
signalling,8 hormone secretion,9 auditory function,10 wound

healing,11 immune functions,12 inflammatory disorders13 and
bone remodelling.14 Moreover, gap junctions promote the brain
metastasis of carcinoma into astrocytes through cGAMP transfer.15

The oral cavity and its appendices are exposed to an intricate
environment and considerable mechanical stress.16 Tight polar
connections between epithelial cells, which protect the oral
mucosa from microbial infections and mechanical stress, are
generated from various cell–cell and cell–extracellular matrix
junctions.17 However, compared with the well-discussed roles in
physiological processes, the functions of gap junctions in oral
tissues under healthy and pathological conditions remain to be
further explored. Thus, in this review, we have focused on the
roles of gap junctions in oral development and oral diseases.

GAP JUNCTIONS FORMED BY CONNEXINS
All junctional channels have an analogous integral structure.
However, unlike other membrane channels, different gene families
encode the membrane proteins that form junctional channels in
different animal phyla.18 In vertebrates, the corresponding genes
are denominated with a symbol beginning with “GJ” (for gap
junction), which represents a virtual narrow separation of 2–4 nm
between two neighbouring cells observed using a transmission
electron microscope (TEM).19 Meanwhile, the proteins are
generally referred to with an abbreviation beginning with “Cx”
(for connexin) combined with a number corresponding to the
approximate molecular mass of the predicted polypeptide in
kilodaltons (kDa).20
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Structure and function of the connexin hemichannel
Structure of connexins. Each connexin protein is composed of
four transmembrane α-helices (TM1–TM4) connected by two
extracellular loops and one intracellular loop.21 Their long C-
termini (CT) and short N-termini (NT) are located on the
cytoplasmic side of the membrane (Fig. 1a). Three cysteine
residues reside in each of the two extracellular loops and a proline
residue is strictly conserved in connexin proteins, which are critical
for intramolecular stabilization.18,22 Currently, connexins are
categorized into five subfamilies, i.e., α, β, γ, δ and ε or GJA,
GJB, GJC, GJD and GJE, according to the differences and
similarities in the amino acid sequences.20 The distribution of
connexins (Cxs) varies according to the cell types, the develop-
mental period and the species, partially due to their trafficking
towards the plasma membrane after synthesis in the endoplasmic
reticulum. Connexin 43 (Cx43) is also expressed on mitochondrial
membranes and is called mitochondrial Cx43 (mito Cx43).23 As
shown in our previous study, Cx43 localizes in the cytoplasm and
dendritic processes of osteocytes and even clusters as plaques at
the intersection of the dendritic processes of two cells (Fig. 2a).24

We also observed a scattered, punctate distribution of Cx43 at the
sites of cell–cell contacts in osteoblast (Fig. 2b).

Connexin phosphorylation. The connexin “lifecycle” is a complex
process involving the transcription of a specific connexin gene,
trafficking, assembly, synthesis and turnover. Several phosphor-
ylation events at multiple sites on connexins have been linked to
GJ internalization and turnover. Functional data on phosphoryla-
tion has been reported for Cx32, Cx43, Cx45 and Cx56. The C-
terminal region of the connexin proteins appears to be the main
region that is phosphorylated, except for Cx56, which also
contains phosphorylation sites within the cytoplasmic loop region,
in addition to its C-terminal domain.25,26 No reports have
identified phosphorylation sites at the N-terminus of connexins.
Cx26 is the only connexin that exists in a non-phosphorylated
state.27 Notably, connexins have rapid turnover rates as

membrane proteins. For instance, the half-life of Cx32 in rodent
hepatocytes is <5 h in vivo.28 The phosphorylation of Cx43 at
different sites also controls gap junction degradation.29 According
to Fernandes et al., Cx43 phosphorylation attenuates the assembly
of gap junctions and potentially leads to Cx43 degradation.30

Moreover, connexin phosphorylation is also associated with the
gating of hemichannels or intact gap junction channels. When
Cx43 is phosphorylated at the MAPK sites in the presence of a
normal extracellular [Ca2+] concentration, connexin hemichannels
are closed. However, dephosphorylation of those sites by
phosphatases in response to a biological stressor, such as
hyperosmolarity, induces opening of the hemichannels, resulting
in the influx of extracellular ions that impair the function of cells.31

Phosphorylation of Cxs is very important in regulating gap
junctional intercellular communication (GJIC), several other sites
have been identified and additional phosphorylation sites will
likely be identified in the future.

Gap junctions
Structure of gap junctions. Six connexin subunits are arranged
into a hexamer, forming an annular torus structure around an
aqueous pore, which is called a hemichannel or a connexon.
Connexons are classified into homomeric (composed of a single
connexin protein) and heteromeric (composed of two or more
different connexins) channels based on the composition of the
channel. Those connexons are then transported to the cell
membrane surface, where they dock with a partner connexon
from an adjacent cell, forming an intercellular channel that spans
the two cells and is called a gap junction channel.32 In addition to
homomeric, homotypic channels, a diverse arrangement of gap
junctional channels exists between apposed cells. The gap
junction channel is classified as homotypic when it is formed
from connexons with the same composition. Conversely, if the
components of the connexons differ, the gap junctional channel is
defined as heterotypic (Fig. 1b).33

Function of gap junctions. Gap junctions display a relatively low
substrate specificity and are permeable to a wide variety of
molecules with mass <1 kDa, such as small metabolites, ions and
intracellular signalling molecules (i.e., various ions, ATP, ADP,
cAMP, amino acids, small peptides, glucose, inositol triphosphate,
cyclic nucleotides and oligonucleotides).34 Gap junctional inter-
cellular communication is actively involved in virtually all aspects
of the cellular life cycle, ranging from cell growth, differentiation
and function to cell death. The transfer of current and electrical
coupling between cells are key factors regulating the function of
excitable tissues, e.g., the heart, in which rapid current transmis-
sion is mediated by gap junctional channels between adjacent
cells.7 In addition to the heart, gap junctions provide a direct
pathway of low resistance for the spread of presynaptic electrical
currents to the postsynaptic site in electrical synapses of
neurons.35 Moreover, gap junctions facilitate the diffusion of
signals from various molecules. Based on accumulating evidence,
some Cx channels are permeable to certain soluble second
messengers, amino acids, nucleotides and glucose and its
metabolites.18 Furthermore, cell-to-cell propagation of calcium
waves, which may be initiated by a focal mechanical, electrical or
hormonal stimulus, serve to coordinate a global cellular response
by diffusing IP3 through the gap junctions between cells.36

Regulatory effects of growth factors on gap junctions. Given the
diversity of gap junction structures, the mechanisms controlling
gap junction activity are complex. Various factors are involved in
the regulation of GJIC, e.g., growth factors and changes in
extracellular matrix.37,38 Several growth factors have been
confirmed to be involved in the regulation of GJIC, and different
growth factors induce distinct and even opposite effects on gap
junctions.
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Fig. 1 Model of a connexin and gap junction channel. a The
connexin monomer. NT, N-terminus; CL, cytoplasmic loop; CT, C-
terminus; EL1 and EL2, extracellular loops 1 and 2; M1–M4,
transmembrane domains 1–4. b Possible arrangements of connexins
in a gap junction channel. The figure shows different components of
gap junction channels. Homomeric connexons are formed by a
single connexin type. Heteromeric connexons are composed of
more than one connexin type. When connexons of the same
composition form a gap junction channel, it is classified as a
homotypic channel. If the connexons differ in components, the
channel is classified as heterotypic
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The effect of epidermal growth factor (EGF) on GJIC of different
cell types has been reported. In most cases, EGF reduced the
intercellular communication via GJs. For instance, the application
of 10 ng/ml epidermal growth factor (EGF) for 24 h reduced GJIC in
human keratinocytes, and this inhibitory effect of EGF was
induced by the MAPK-mediated phosphorylation of Cx43 at
Ser255.39 In addition, EGF decreased the expression of the Cx43
protein in cultured rat cortical astrocytes.40 However, in some cell
types, such as the K7 human kidney epithelial cell line and
granulosa cells, EGF increased the amount of the Cx43 transcript
and protein, as well as the function of GJs.41,42 In addition to
affecting the functional state of Cx43-mediated GJs, EGF has been
reported to modulate other Cx proteins, such as Cx32, which is
upregulated by EGF in hepatocytes.43

Controversies exist regarding the effect of platelet-derived
growth factor (PDGF) on GJs. The addition of PDGF to mesangial
cell cultures causes a rapid and transient inhibition of GJIC, with
maximal inhibition occurring 15min after PDGF exposure and
returning to control levels after 90 min.44 After the transfection of

T51B cells, a rat liver epithelial cell line lacking endogenous PDGF
receptors, with a retrovirus encoding wild type human PDGF
receptor, GJIC was completely and transiently interrupted upon
treatment with PDGF.45 This induced change was associated with
increased Cx43 phosphorylation and MAPK activation. PDGF does
not affect GJIC in cells transfected with Cx43 truncated at amino
acid 256 and carrying a myc tag appended to its C-terminus,
suggesting that a Cx43 target site is related to the reduction in
GJIC.46 However, PDGF was recently shown to increase Cx43
expression under hypoxic conditions.47

Similar to PDGF, fibroblast growth factor-2 (FGF-2) was shown
to exert a biphasic effect on GJIC in cardiac fibroblasts, reducing it
within 30 min (short-term effect), but increasing it after longer
periods (>6 h).48 FGF-2 also reduced the levels of the Cx43
transcript and protein in astroglial cells.49 This FGF-2-induced
reduction was likely due to the PKC-mediated phosphorylation of
Cx43 at serine 368.50 In cardiomyocytes, FGF signalling was shown
to be essential for Cx43 phosphorylation and cardiac gap junction
maintenance.51 FGF-5 and FGF-9 induce a decrease in the number
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Fig. 2 Distribution of Cx43 in osteocytes and osteoblasts. a Representative images of IF staining for Cx43 in osteocytes. Immunofluorescence
staining was performed with antibodies against connexin 43 (red); nuclei were stained with DAPI (blue). Green represents the FITC-labelled
cytoskeleton. Details are shown in the boxed area (white). Representative ICC staining of osteocytes. The red arrow indicates the localization
of Cx43. b Representative images of IF staining for Cx43 in osteoblasts. Representative image of IF staining for Cx43 in primary osteoblasts.
Representative image of IF staining for Cx43 in the MC3T3 cell line. Immunofluorescence staining was performed with antibodies against
connexin 43 (red); nuclei were stained with DAPI (blue). Green represents the FITC-labelled cytoskeleton. Details are shown in the boxed area
(white)
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of gap junctions in specific brain regions.49 As shown in our
previous study, FGF-7 induces the expression of Cx43 and
enhances the function of GJs in osteocytes.52 Thus, members of
the fibroblast growth factor family affect GJIC in a complex
manner.
According to our recent studies, transforming growth factor-

beta 1 (TGF-β1) also enhances GJIC by upregulating the level of
the Cx43 protein in osteocytes and chondrocytes.53–55 The
mechanism by which TGF-β1 increases Cx43 expression is through
the activation of the ERK and Smad signalling pathways.53

However, the role of TGF-β1 in modulating the expression of
the Cx43 transcript and protein also depends on the cell type.
TGF-β1 upregulates Cx43 expression in human granulosa cells and
trophoblast cells.56,57 In contrast, TGF-β1 downregulates Cx43
expression in cultured smooth muscle cells from the human
detrusor and in rat hepatic stellate cells.58,59 TGF-β2 was recently
shown to induce the expression of the Cx43 protein in MSCs.60

TGF-β3 was also shown to increase gap junctional communication
among folliculostellate cells.61 Additional studies are required to
elucidate the complicated effects of growth factors on GJs in the
future.

The protein interaction partners of connexins. Based on accumu-
lating evidence obtained in recent years, gap junction proteins do
not act as isolated entities in the plasma membrane, but rather
interact with a series of partner proteins that link them to the
cytoskeleton and to signalling pathways. Multiple proteins have
been reported to interact or only colocalize with gap junction
proteins.62 Gap junctions have only recently been reported to
interact with the actin cytoskeleton. Squecco et al.63 observed the
colocalization of Cx43 and F-actin in C2C12 cells. Cx43 was also
suggested to interact with α-tubulin and β-tubulin.64 Zonula
occludens (ZO) proteins, one ubiquitous type of scaffolding
protein, may play a general role in the formation and turnover
of gap junctions to regulate intercellular communication, since all
Cxs identified to date have been reported to interact with ZO
proteins. For example, ZO-1 directly tethers connexins to the actin
skeleton,65 and ZO-2 also binds to the C-terminus of Cx43.66

However, functional GJs are formed even when the interaction
between connexins and ZO-1 is blocked, suggesting that other
mechanisms are also involved in plaque formation.67

Gap junctions are formed through cell–cell contact and
homophilic cadherin–cadherin interactions.68 Occludin, a protein
involved in the formation of tight junctions, interacts with Cx32 in
immortalized mouse hepatocytes.69 As shown in the study by
Nusrat et al., Cx26 interacts with the coiled-coil domain of occludin
in epithelial cells.70 Claudins are another component of the tight
junction complexes that have a similar topology to Cxs. Claudin-1
colocalizes with Cx32 in rat hepatocytes lines,71 and claudin-5
coprecipitates with Cx43 in porcine blood-brain barrier endothelial
cells.72 In addition to the proteins forming tight junctions, N-
cadherin, the core component of adherens junctions, also plays a
central role in mediating cell–cell interactions. In NIH3T3 cells,
Cx43 interacts with an N-cadherin-containing multiprotein com-
plex. Moreover, this interaction has been shown to be essential for
gap junction formation.73 When the N-cadherin gene is deleted in
N-cadherin knockout mice, cardiomyocytes are deficient gap
junctions.74 However, an ongoing controversy exists over the role
of N-cadherin in the formation of gap junction. According to
Govindarajan et al.75, the expression of N-cadherin attenuates GJ
assembly in rat liver epithelial cells by inducing the endocytosis
of Cx43.
Some membrane channels and enzymes are also connexin

partners. Sodium channel complexes interact with Cx43 in
ventricular myocytes.76 Aquaporin, a member of the major
intrinsic protein (MIP) superfamily, interacts with two binding
sites within the intracellular loop region of Cx50.77 The long
cytosolic C-terminus (CT) of Cx43 is required for the proper

function of Cx43 gap junctions. The C-terminus of several
connexins (e.g., Cx43) contains consensus phosphorylation sites
for several proteins, including Src protein tyrosine kinases,78 Akt79

and mitogen-activated protein kinase (MAPK).80 Protein kinase C
(PKC) displays partial colocalization with Cx43 and directly
phosphorylates Cx43 at Ser368,81 thus modulating various phases
of the Cx43 life cycle, including gap junction assembly, gap
junction channel permeability, and Cx43 endocytosis and
degradation. Conceivably, the interactions between Cxs and other
proteins have important functions under physiological conditions
and in associated diseases, such as oral disease.

CONNEXINS IN ORAL DEVELOPMENT AND ORAL DISEASES
Connexins in oral and maxillofacial development
Connexins in tooth development. Tooth development depends on
the sequential and reciprocal interactions between the epithelium
and mesenchyme. In the developing tooth germ of neonatal rats,
Cx43 is distributed both in epithelial and mesenchymal dental
cells;82 Cx43 has been detected between ameloblasts and
between odontoblasts.83,84 Cx43 expression gradually increases
with the progression of odontoblast maturation from pre-
odontoblast to old odontoblasts.85 During ameloblast develop-
ment, Cx43 expression shows a transient decrease in the late
presecretory ameloblasts before enamel formation and then
increases during the secretory stage.86 At the maturation stage
of enamel, GJs contribute to enamel formation by transporting
ions from the papillary layer to ameloblasts.87 As shown in the
study by Toth et al.88, dominant negative G60S mutants of Cx43
result in ameloblast dysregulation and enamel hypoplasia. Once
tooth germ development is completed, consistent expression of
Cx43 at high levels in human dental follicle cells (HDFCs) is
essential for tooth eruption.89 In addition to the involvement of
Cx43 in enamel development, Cx32 has also been detected in the
developing enamel organ.90 Based on these findings, Cxs are
involved in tooth development, and a certain connexin may have
distinct roles in odontogenesis and tooth homoeostasis.

Connexins in maxillofacial development. Cx43 plays a critical role
in the development of maxillofacial structures. Patients who suffer
from oculodentodigital dysplasia (ODDD), which is caused by
mutations in Cx43/GJα1, present oral dysfunction, including oral
clefting, numerous cavities and tooth loss.91 Cx43 and Cx32 are
related to differentiation and growth during the early phase of
submandibular gland development. During this period, Cx43 is
considered to contribute to the branching morphogenesis92 and
the contractile function of myoepithelial cells, while Cx32
expression may correspond to an increase and decrease in the
number of proacinar and mature acinar cells, respectively.93 Cx43
also plays an important role in the initiation of papillary pattern
formation and morphogenesis in the tongue.94 For instance, Cx43
regulates the localization of keratins to pre-pattern of the bud
region during the formation of the circumvallate papilla.95

Compared with the available data on the functions of Cxs in
tooth development, much less is known about the roles of Cxs and
GJs in maxillofacial development, such as palate and mandible
development.

Connexins in oral diseases
Connexins in periodontal tissue. The periodontal ligament (PDL) is
a soft connective tissue that resides between the alveolar bone
and tooth to sustain teeth and preserve tissue homoeostasis.
Periodontal tissue homoeostasis depends on a complicated
cellular network that transmits signals between periodontal
ligament fibroblasts (PDLFs).96 Cx proteins (Cx32, Cx40, Cx43 and
Cx45) are expressed in PDLFs,97,98 while Cx26 and Cx37 have not
been detected. Those proteins have two main functions. One is
the correlation between Cx32 and the secretory function of PDLFs,
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i.e., the ability to produce type I and type III collagen and
fibronectin. On the other hand, Cx40 and Cx45 are considered to
relate to the contractile function of PDLFs, which may relate to
tooth eruption.99 Moreover, Cx43 is involved in the transmission of
signals from mechanical stimuli in the PDL. During orthodontic
tooth movement, Cx43 expression is increased in rat PDLFs.100

Mechanical tension also increases the expression of Cx43 and
promotes GJIC in a time-dependent manner, while 24 h cyclic
stretches downregulate the expression of Cx43 in the membrane
of hPDLFs.98,101 Cxs have also been studied in human gingival
epithelium, where keratinocytes normally express Cx26 and Cx43
at high levels,102–104 and Cx43 even forms plaques in fibroblasts. In
the rat gingival epithelia, Cx43 was detected in the basal layer and
middle of the prickle cell layer. Interestingly, in the human gingival
epithelia, Cx43 expression showed a progressive decrease from
the spinous layers of the oral gingival epithelium to the sulcular
epithelium and parts of the junctional epithelium.102,103 Cx26 was
detected in the granular cell layer and lower part of the squamous
cell layer.105 Nevertheless, Cx43 was downregulated at the early
stage of gingival wound healing, which may contribute to the fast
wound healing of the gingival tissue.106 However, to the best of
our knowledge, no information is available on the role of gap
junctions in periodontal disease.

Connexins in tooth development and diseases. Dental pulp contains
fibroblasts, odontoblasts and undifferentiated mesenchymal cells,
and dental pulp fibroblasts (DPFs) are major components among
these cells.107 Cx32 and Cx43 expression have been observed in
human DPFs. In cultured human pulp cells, Cx43 expression is
upregulated during mineralization processes, indicating that Cx43
might play a role in mineralization.82 This finding was further
supported by a study showing that the inhibition of Cx43
attenuates the odontoblastic differentiation and mineralization of
rat dental pulp cells.108 In addition, Shiting et al.109 found that the
overexpression of Cx43 potentiated the odontoblastic differentia-
tion of dental pulp stem cells (DPSCs), suggesting that Cx43 is
involved in the differentiation of DPSCs into odontoblasts. Cx43 is a
marker of the viability of dental pulp tissue, as Cx43 expression is
reduced in aged human dental pulp. A reduction in Cx43
expression may be one characteristic of aged pulp.110 This
hypothesis was further verified by the rapid degradation of Cx43
in pulp cells exposed to physical stimuli such as heat.111 In intact
adult teeth, Cx43 forms gap junctions between odontoblasts.112

Microscopic observations indicate the localization of gap junctions
between the bodies of odontoblasts and between the bodies and
processes of odontoblasts.113 Similarly, Cx26 is expressed at low
levels in the odontoblast layer, while Cx32 is not detected in
odontoblasts.90 In carious teeth, Cx43 expression is upregulated in
mature odontoblasts in the vicinity of carious lesions, combined
with the prominent expression of Cx43 in the interodontoblastic
cells.114 However, the expression of Cx43 between odontoblasts is
reduced in reactionary dentin that forms during dentin caries
development.115 Notably, fluoride, which is recognized to protect
against tooth decay, increases Cx43 and Cx32 expression, but
decreases Cx45 expression in rat incisor pulp.116 Nevertheless, the
scientific evidence supporting the correlation between Cxs and
caries is insufficient, and the mechanism by which fluoride
regulates connexin expression in odontoblasts remains to be
elucidated.

Connexins in oral cancer. Connexins may be associated with cell
growth, since the absence of GJIC can result in an accumulation of
growth factors in cells117 and a suppression of contact inhibition,
which together lead to cell proliferation.118 In addition, a decrease
in Cx43 and Cx32 expression may result in the uncontrolled
proliferation and abnormal differentiation of various benign and
malignant tumour cells.119–121 Oral squamous cell carcinoma
(OSCC) is the most prevalent and most commonly studied oral

cancer.122 However, the potential role of the oral microbiome in
OSCC has not been clearly elucidated. In the dysplasia-free oral
mucosa, Cx43 is mainly expressed on the membrane in the
stratum spinosum and stratum granulosum, but is not expressed
in the stratum corneum. However, a significant increase in
cytoplasmic Cx43 expression and a loss of GJIC have been
observed during the early carcinogenesis of OSCC. Therefore,
membrane Cx43 levels might be an independent biomarker for
early changes associated with oral squamous cell carcinoma.123

Moreover, Cx43+ fibroblasts are enriched in the stroma of OSCC,
which may be a hallmark for judging oral SCC invasion.124

Changes in Cx43 expression have been detected in malignant and
benign tumours. In another study, the downregulation of Cx43
and Cx32 expression was observed in keratocystic odontogenic
tumours, one of the most frequently occurring types of benign
odontogenic tumours.125 In addition to studies of changes in Cx43
and Cx32 expression during carcinogenesis, Cx26 expression was
also reported to be reduced in tongue carcinoma.126,127 Recently,
many studies have focused on therapies that restore connexin-
mediated GJIC in oral cancer. For example, all-trans retinoic acid
was shown to be beneficial for OSCC cells to regain cell–cell
communication by increasing Cx32 and Cx43 expression.128

According to Marie et al., gap junctional intercellular communica-
tion is enhanced by docetaxel in salivary gland carcinoma,
concomitant with an increase in Cx43 expression and its
membrane localization.129 Lycopene significantly increased Cx43
expression and GJIC between KB-1 cells, which originate from a
human oral cavity tumour.130 Based on the information described
above, Cx43 may be a tumour suppressor and a potentially novel
therapeutic target for oral cancer.

Connexins in diseases caused by gene mutations. Functional
studies have begun to identify some of the underlying mechan-
isms by which connexin channel mutations contribute to oral
cavity diseases. Keratitis–ichthyosis–deafness (KID) syndrome is a
rare ectodermal dysplasia caused by mutations in the GJB2 gene,
which is responsible for the production of the Cx26 protein, a
protein present in the epithelial gap junctions that is postulated to
be associated with the differentiation of ectodermally derived
tissues. Phenotypic features associated with Cx26 mutations are
significant visual and auditory impairments. Affected patients are
also at increased risk of developing epithelial malignancies. One
KID syndrome has been noted to confer a predisposition to
SCC.131 Approximately 11% of patients with KID syndrome
develop this condition.132 Oculodentodigital dysplasia (ODDD) is
another congenital disorder caused by a mutation in the GJα1
gene, which encodes Cx43.133 It is characterized by multiple
phenotypic abnormalities involving the face, limbs, teeth and
eyes, as well as neurological symptomatology. Concerning the
teeth, microdontia is present in one-fifth of the patients. More
frequently, patients suffer from the amelogenesis imperfecta (AI),
hypoplastic type. Other dental symptoms reported include
malocclusion, delayed tooth development, pulp stones, tooth loss
and missing teeth.134

Connexins and wound healing in the oral cavity. The suppression
of Cx43 expression or function promotes skin wound healing and
alleviates scarring. Corresponding to this finding, Cx43 expression
is substantially decreased in human gingival fibroblasts at the
early stage of wound closure, and Cx43 regulates the expression
of wound-healing genes in gingiva. Thus, downregulation of Cx43
appears to be conductive to fast and scarless wound healing in
gingival tissues.106,135,136 Consistent with this finding, Masato et al.
also observed a wound-induced decrease and subsequent
increase in Cx43 expression in the hamster tongue epithelium.126

Interestingly, in contrast to skin after injury, the expression of Cx43
in buccal mucosa wounds decreases and remains at a low level for
14 days. Increased Cx43 expression affects MMP-1 synthesis,
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which facilitates scar formation.137 Together, these studies explain
why the oral mucosa is less prone to form a scar after wound
healing compared with skin.

Connexins in the salivary gland. Salivary glands play an important
role in oral biology by secreting saliva to provide water for
lubrication, as well as electrolytes, mucus, enzymes and anti-
bacterial compounds. Abnormal function of the salivary gland can
lead to an extensive deterioration of oral health. Gap junctions
have recently been suggested to be involved in maintaining
salivary gland function.138 Cx26 and Cx32 colocalize within the
same gap junctional plaque between acinar cells in rat parotid
glands, but no expression of these two proteins is observed in the
ducts.139,140 In rat submandibular and sublingual glands, Cx32 is
distributed at the membranes between acinar cells and Cx43 is
localized at the gap junctions between the thin processes of
myoepithelial cells, suggesting that Cx32-meditated GJs are
related to regulation of the secretory function of acinar cells and
Cx43-mediated GJs are involved in the contractile function of
myoepithelial cells.141,142 However, these studies are still limited to
exploring phenotypes, and the role of gap junctions in specific
salivary gland diseases is unknown. Therefore, an analysis of
connexins and gap junctions will hopefully contribute to the study
of salivary diseases.

CONCLUSIONS AND PERSPECTIVES
As data documenting the functions of connexins in the oral health
and oral disease are still limited, information is mainly confined to
the distribution of Cxs in diverse oral tissues during different
developmental phases. Far fewer reports have described the role
of functional GJs in oral diseases such as periodontitis and chronic
apical periodontitis. Previous studies have provided support for
additional roles of Cxs in oral development and the pathogenesis
and prognosis of oral diseases. Studies of various Cxs in oral
tissues are categorized in Table 1. Collectively, Cxs and GJs play
important roles in maintaining the normal development and
function of oral tissues. Specific Cxs may potentially represent
molecular targets for the treatment of certain oral diseases.
Therefore, Cxs and gap junctions appear to be a very interesting
field for additional research.
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