Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Polymethoxyselenoflavones exert anti-obesity effects through activation of lipolysis and brown adipocyte metabolism

Abstract

Background/objectives

Polymethoxyselenoflavone (PMSF) is a compound that substitutes the oxygen atom in a flavonoid with selenium. This study aimed to investigate the effects of PMSFs on lipid metabolism in adipocytes and their anti-obesity potential.

Subjects/methods

To test lipolytic and thermogenic effects of the compounds in vitro, adipocytes differentiated from immortalized pre-brown adipocyte progenitors and pre-white adipocyte cell lines were treated with 19 PMSFs. The expression levels of brown adipocyte markers and genes related to mitochondrial metabolism were analyzed by qPCR and western blot. In vivo anti-obesity effect was investigated using diet-induced obesity mouse models and adipocyte-specific ATGL knockout mice.

Results

The qPCR analysis identified 2-(3,4-dimethoxyphenyl)-4H-selenochromen-4-one (DMPSC) as the most potent brown adipogenic candidate among the 19 compounds tested in this study. DMPSC treatment significantly increased the mitochondrial content and oxidative metabolism in adipocytes in vitro. Mechanistically, DMPSC treatment increased lipolysis through activation of PKA downstream signaling. Consistently, the in vivo treatment of DMPSC increased energy consumption, reduced body weight, and improved glucose tolerance in mice fed with high-fat diets. Moreover, DMPSC treatment increased brown adipocyte marker expression and mitochondrial content in adipose tissue of mice. The anti-obesity effects were absent in adipocyte-specific ATGL knockout mice, indicating that the DMPSC effect is mediated by cytosolic lipase-dependent mechanisms.

Conclusions

Collectively, our results indicated that DMPSC exerted anti-obesity effects partially through the PKA signaling-mediated activation of lipolysis and brown adipose tissue metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro effects of polymethoxyselenoflavones on brown adipogenic marker expression in brown adipocytes.
Fig. 2: 4A increases mitochondrial content in brown adipocytes.
Fig. 3: 4A increased PKA downstream signaling pathway related to lipolysis.
Fig. 4: 4A increased oxygen consumption and energy expenditure of mice.
Fig. 5: In vivo anti-obesity effects of 4A in high-fat-diet-fed obese mice.
Fig. 6: ATGL knockout attenuates effects of 4A on body weight and brown adipocyte marker expression.

Similar content being viewed by others

References

  1. Rosen Evan D, Spiegelman Bruce M. What we talk about when we talk about fat. Cell. 2014;156:20–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 2018;27:68–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee Y-H, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014;1842:358–69.

    CAS  PubMed  Google Scholar 

  4. Yang W-R, Choi Y-S, Jeong J-H. Efficient synthesis of polymethoxyselenoflavones via regioselective direct C–H arylation of selenochromones. Organ Biomol Chem. 2017;15:3074–83.

    CAS  Google Scholar 

  5. Granneman JG. Renaissance of brown adipose tissue research: integrating the old and new. Int J Obes Suppl. 2015;5(Suppl 1):S7–S10.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10:24–36.

    CAS  PubMed  Google Scholar 

  7. Contreras GA, Lee Y-H, Mottillo EP, Granneman JG. Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol-Endocrinol Metab. 2014;307:E793–E799.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee Y-H, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015;29:286–99.

    CAS  PubMed  Google Scholar 

  9. Pietta P-G. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035–42.

    CAS  PubMed  Google Scholar 

  10. Kumar S, Pandey A. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013; 2013: 16.

  11. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418–25.

    CAS  PubMed  Google Scholar 

  12. Zhang X, Li X, Fang H, Guo F, Li F, Chen A, et al. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab. 2019;16:47.

    Google Scholar 

  13. Davis C, Mudd J, Hawkins M. Neuroprotective effects of leptin in the context of obesity and metabolic disorders. Neurobiol Dis. 2014;72:61–71.

    CAS  PubMed  Google Scholar 

  14. Choi Y-S, Kim D-M, Kim Y-J, Yang S, Lee K-T, Ryu JH, et al. Synthesis and evaluation of neuroprotective selenoflavanones. Int J Mol Sci. 2015;16:29574–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim S-N, Jung Y-S, Kwon H-J, Seong JK, Granneman JG, Lee Y-H. Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biol Sex Differ. 2016;7:67.

    PubMed  PubMed Central  Google Scholar 

  16. Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15:480–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim S-N, Kwon H-J, Im S-W, Son Y-H, Akindehin S, Jung Y-S, et al. Connexin 43 is required for the maintenance of mitochondrial integrity in brown adipose tissue. Sci Rep. 2017;7:7159–7159.

    PubMed  PubMed Central  Google Scholar 

  18. Li P, Zhu Z, Lu Y, Granneman JG. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. Am J Physiol-Endocrinol Metab. 2005;289:E617–E626.

    CAS  PubMed  Google Scholar 

  19. Kim S-N, Kwon H-J, Akindehin S, Jeong HW, Lee Y-H. Effects of epigallocatechin-3-gallate on autophagic lipolysis in adipocytes. Nutrients. 2017;9:680.

    PubMed Central  Google Scholar 

  20. Akindehin S, Jung YS, Kim SN, Son YH, Lee I, Seong JK. Myricetin exerts anti-obesity effects through upregulation of SIRT3 in adipose tissue. Nutrients. 2018;10:1962.

    PubMed Central  Google Scholar 

  21. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown adipose tissue energy metabolism in humans. Front Endocrinol. 2018;9:447–447.

    Google Scholar 

  22. Granneman JG, Moore H-PH. Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol Metab. 2008;19:3–9.

    CAS  PubMed  Google Scholar 

  23. Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res. 2014;55:2276–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Verma AK, Pratap R. The biological potential of flavones. Nat Product Rep. 2010;27:1571–93.

    CAS  Google Scholar 

  25. HORÁKOVÁ Ľ. Flavonoids in prevention of diseases with respect to modulation of Ca-pump function. Interdiscip Toxicol. 2011;4:114–24.

    PubMed  PubMed Central  Google Scholar 

  26. Prasain JK, Carlson SH, Wyss JM. Flavonoids and age-related disease: risk, benefits and critical windows. Maturitas. 2010;66:163–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Walle T. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol. 2007;17:354–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawamoto A, Nakanishi M, Okuyama S, Furukawa Y, Nakajima M. Heptamethoxyflavone inhibits adipogenesis via enhancing PKA signaling. Eur J Pharmacol. 2019;865:172758–172758.

    CAS  PubMed  Google Scholar 

  29. Li RW, Theriault AG, Au K, Douglas TD, Casaschi A, Kurowska EM, et al. Citrus polymethoxylated flavones improve lipid and glucose homeostasis and modulate adipocytokines in fructose-induced insulin resistant hamsters. Life Sci. 2006;79:365–73.

    CAS  PubMed  Google Scholar 

  30. Song Y, Kim M-B, Kim C, Kim J, Hwang J-K. 5,7-dimethoxyflavone attenuates obesity by inhibiting adipogenesis in 3T3-L1 adipocytes and high-fat diet-induced obese C57BL/6J mice. J Med Food. 2016;19:1111–9.

    CAS  PubMed  Google Scholar 

  31. Xie Y, Zhang Y, Su X. Antidiabetic and hypolipidemic effects of 5,7-dimethoxyflavone in streptozotocin-induced diabetic rats. Med Sci Monit. 2019;25:9893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Saito T, Abe D, Sekiya K. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2007;357:371–6.

    CAS  PubMed  Google Scholar 

  33. Yuan X, Wei G, You Y, Huang Y, Lee HJ, Dong M, et al. Rutin ameliorates obesity through brown fat activation. FASEB J. 2017;31:333–45.

    CAS  PubMed  Google Scholar 

  34. Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem. 2017;42:62–71.

    CAS  PubMed  Google Scholar 

  35. Arias N, Picó C, Teresa Macarulla M, Oliver P, Miranda J, Palou A, et al. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity. 2017;25:111–21.

    CAS  PubMed  Google Scholar 

  36. Cong H, Zhong W, Wang Y, Ikuyama S, Fan B, Gu J. Pycnogenol® induces browning of white adipose tissue through the PKA signaling pathway in apolipoprotein E-deficient mice. J Diabetes Res. 2018;2018:9713259–9713259.

    PubMed  PubMed Central  Google Scholar 

  37. Imran KM, Yoon D, Lee T-J, Kim Y-S. Medicarpin induces lipolysis via activation of protein kinase A in brown adipocytes. BMB Rep. 2018;51:249–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Betz MJ, Enerbäck S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol. 2018;14:77–87.

    CAS  PubMed  Google Scholar 

  39. Peng I-W, Kuo S-M. Flavonoid structure affects the inhibition of lipid peroxidation in Caco-2 intestinal cells at physiological concentrations. J Nutr. 2003;133:2184–7.

    CAS  PubMed  Google Scholar 

  40. Huang J-T, Cheng Y-Y, Lin L-C, Tsai T-H. Structural pharmacokinetics of polymethoxylated flavones in rat plasma using HPLC-MS/MS. J Agric Food Chem. 2017;65:2406–13.

    CAS  PubMed  Google Scholar 

  41. Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50:600–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao Z, Morris-Natschke SL, Lee K-H. Strategies for the optimization of natural leads to anticancer drugs or drug candidates. Med Res Rev. 2016;36:32–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Resettlement Fund for the new faculty of Seoul National University. This research was supported by Basic Science Research Program [NRF-2018R1A5A2024425, NRF-2019R1C1C1002014] of Ministry of Science of ICT and by Korea Mouse Phenotyping Project [NRF-2013M3A9D5072550] of Ministry of Science of ICT and Future Planning through National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hee Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, HJ., Saha, A., Ahn, SY. et al. Polymethoxyselenoflavones exert anti-obesity effects through activation of lipolysis and brown adipocyte metabolism. Int J Obes 45, 122–129 (2021). https://doi.org/10.1038/s41366-020-0606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0606-7

This article is cited by

Search

Quick links