Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Adiponectin homolog osmotin, a potential anti-obesity compound, suppresses abdominal fat accumulation in C57BL/6 mice on high-fat diet and in 3T3-L1 adipocytes

Subjects

Abstract

Objectives

Obesity is characterized by excessive fat accumulation due to an imbalance between energy intake and expenditure. Osmotin, a plant derived natural protein, is a known homolog of adiponectin. To analyze the role of Osmotin in controlling energy metabolism by suppressing abdominal fat accumulation.

Methods

We investigated the effects of osmotin in C57BL/6 mice on high-fat diet and in 3T3-L1 adipocytes by Biochemical tests, Immunofluorescence confocal Microscopy, RT-PCR, and Flow cytometry.

Results

In this study, we investigated the anti-obesity effects of osmotin on adipocyte differentiation and regulation of the related factors lipolysis and glucose uptake in 3T3-L1 cells in vitro. Moreover, we analyzed the role of osmotin in prevention of insulin resistance, excess fat accumulation and metabolic syndrome in high-fat diet mouse model via AMPK and MAPK pathways in vivo. In addition, osmotin caused cell cycle arrest in G0/G1 phase by regulating expression of p21, p27 and CDK2 and improved glucose control, as concluded from glucose and insulin tolerance tests.

Conclusion

These results reveal the role of osmotin in AMPK downstream signaling. These results provide the first indication that osmotin exerts therapeutic effects on obesity, which could promote development of therapeutic aspects for obesity and related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:766–81.

  2. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. J Am Med Assoc. 2003;289:76–9.

    Google Scholar 

  3. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–43.

    CAS  PubMed  Google Scholar 

  4. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    CAS  PubMed  Google Scholar 

  5. Haslam DW, James WP. Obesity. Lancet. 2005;366:1197–209.

    PubMed  Google Scholar 

  6. Targher G, Byrne CD. Obesity: metabolically healthy obesity and NAFLD. Nat Rev. Gastroenterol Hepatol. 2016;13:442–4.

    PubMed  Google Scholar 

  7. Curtis R, Geesaman BJ, DiStefano PS. Ageing and metabolism: drug discovery opportunities. Nat Rev Drug Discovery. 2005;4:569–80.

    CAS  PubMed  Google Scholar 

  8. Nawrocki AR, Scherer PE. Keynote review: the adipocyte as a drug discovery target. Drug Discovery Today. 2005;10:1219–30.

    CAS  PubMed  Google Scholar 

  9. Negrel R, Grimaldi P, Ailhaud G. Establishment of preadipocyte clonal line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones. PNAS. 1978;75:6054–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013;92:229–36.

    CAS  PubMed  Google Scholar 

  11. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78:783–809.

    CAS  PubMed  Google Scholar 

  12. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96.

    CAS  PubMed  Google Scholar 

  13. Rodgers RJ, Tschop MH, Wilding JP. Anti-obesity drugs: past, present and future. Dis Models Mech. 2012;5:621–6.

    CAS  Google Scholar 

  14. Adan RA. Mechanisms underlying current and future anti-obesity drugs. Trends Neurosci. 2013;36:133–40.

    CAS  PubMed  Google Scholar 

  15. Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell. 2005;17:171–80.

    CAS  PubMed  Google Scholar 

  16. Miele M, Costantini S, Colonna G. Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin. PLoS ONE. 2011;6:e16690.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941–6.

    CAS  PubMed  Google Scholar 

  18. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277:25863–6.

    CAS  PubMed  Google Scholar 

  19. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947–53.

    CAS  PubMed  Google Scholar 

  20. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. PNAS. 2001;98:2005–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mullen KL, Smith AC, Junkin KA, Dyck DJ. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Am J Physiol Endocrinol Metab. 2007;293:E83–90.

    CAS  PubMed  Google Scholar 

  22. Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.

    CAS  PubMed  Google Scholar 

  23. Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem. 2006;281:2654–60.

    CAS  PubMed  Google Scholar 

  24. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY. et al. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimeras disease neuropathological deficits. Mol Psychiatr. 2017;22:407–16.

    CAS  Google Scholar 

  25. Yoon G, Shah SA, Ali T, Kim MO. The adiponectin homolog osmotin enhances neurite outgrowth and synaptic complexity via AdipoR1/NgR1 signaling in Alzheimer’s disease. Mol Neurobiol. 2018;55:6673–86.

    CAS  PubMed  Google Scholar 

  26. Abid NB, Yoon G, Kim MO. Molecular cloning and expression of osmotin in a baculovirus-insect system: purified osmotin mitigates amyloid-beta deposition in neuronal cells. Sci Rep. 2017;7:8147.

    PubMed  PubMed Central  Google Scholar 

  27. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6:55–68.

    CAS  PubMed  Google Scholar 

  28. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008;32(Suppl 7):S13–8.

    CAS  Google Scholar 

  29. Habinowski SA, Witters LA. The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 2001;286:852–6.

    CAS  PubMed  Google Scholar 

  30. Daval M, Foufelle F, Ferre P. Functions of AMP-activated protein kinase in adipose tissue. J Physiol. 2006;574(Pt 1):55–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung Y, Park J, Kim HL, Sim JE, Youn DH, Kang J, et al. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J. 2018;32:1388–402.

    CAS  PubMed  Google Scholar 

  32. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Investig. 2003;112:91–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987;223:217–22.

    CAS  PubMed  Google Scholar 

  34. Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009;9:407–16.

    PubMed  Google Scholar 

  35. Ahmad A, Ali T, Kim MW, Khan A, Jo MH, Rehman SU, et al. Adiponectin homolog novel osmotin protects obesity/diabetes-induced NAFLD by upregulating AdipoRs/PPARα signaling in ob/ob and db/db transgenic mouse models. Metab: Clin Exp. 2019;90:31–43.

    CAS  Google Scholar 

  36. Jo MG, Ikram M, Jo MH, Yoo L, Chung KC, Nah SY. et al. Gintonin mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of alpha-synuclein via the Nrf2/HO-1 pathway. Mol Neurobiol. 2019;56:39–55.

    CAS  PubMed  Google Scholar 

  37. Perfield JW 2nd, Lee Y, Shulman GI, Samuel VT, Jurczak MJ, Chang E, et al. Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance. Diabetes. 2011;60:1168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–6.

    CAS  PubMed  Google Scholar 

  39. Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes. 2003;52:634–41.

    CAS  PubMed  Google Scholar 

  40. Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. PNAS. 2003;100:44–9.

    CAS  PubMed  Google Scholar 

  41. Reichert M, Eick D. Analysis of cell cycle arrest in adipocyte differentiation. Oncogene. 1999;18:459–66.

    CAS  PubMed  Google Scholar 

  42. Kotani K, Peroni OD, Minokoshi Y, Boss O, Kahn BB. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J Clin Investig. 2004;114:1666–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285:33623–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014;2014:658913.

    PubMed  PubMed Central  Google Scholar 

  45. Chouchani ET, Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab. 2019;1:189–200.

    PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Palanivel R, Rai E, Park M, Gabor TV, Scheid MP, et al. Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes. 2015;64:36–48.

    CAS  PubMed  Google Scholar 

  47. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International J Mol Sci. 2017;18.

  48. Suzuki A, Okamoto S, Lee S, Saito K, Shiuchi T, Minokoshi Y. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol. 2007;27:4317–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo Z, Saha AK, Xiang X, Ruderman NB. AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci. 2005;26:69–76.

    CAS  PubMed  Google Scholar 

  50. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:6184–223.

    PubMed  PubMed Central  Google Scholar 

  51. Anil Kumar S, Hima Kumari P, Shravan Kumar G, Mohanalatha C, Kavi Kishor PB. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci. 2015;6:163.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22:279–90.

    CAS  PubMed  Google Scholar 

  53. Wei Q, Lee JH, Wang H, Bongmba OYN, Wu CS, Pradhan G, et al. Adiponectin is required for maintaining normal body temperature in a cold environment. BMC Physiol. 2017;17:8.

    PubMed  PubMed Central  Google Scholar 

  54. Evans M, Lin X, Odle J, McIntosh M. Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. J Nutr. 2002;132:450–5.

    CAS  PubMed  Google Scholar 

  55. Patel YM, Lane MD. Mitotic clonal expansion during preadipocyte differentiation: calpain-mediated turnover of p27. J Biol Chem. 2000;275:17653–60.

    CAS  PubMed  Google Scholar 

  56. Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 1999;13:2231–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rattan R, Giri S, Singh AK, Singh I. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem. 2005;280:39582–93.

    CAS  PubMed  Google Scholar 

  58. Kim S, Jung J, Kim H, Heo RW, Yi CO, Lee JE, et al. Exendin-4 improves nonalcoholic fatty liver disease by regulating glucose transporter 4 expression in ob/ob mice. Korean J Physiol Pharmacol. 2014;18:333–9.

    PubMed  PubMed Central  Google Scholar 

  59. Fu Q, Olson P, Rasmussen D, Keith B, Williamson M, Zhang KK, et al. A short-term transition from a high-fat diet to a normal-fat diet before pregnancy exacerbates female mouse offspring obesity. Int J Obes (Lond). 2016;40:564–72.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2016M3C7A1904391).

Author information

Authors and Affiliations

Authors

Contributions

MGJ conceived the hypothesis, designed the research, performed overall experiments, wrote manuscript, and performed data analysis. MWK and MHJ designed the research and performed the in vivo experiments, calculations, and data analysis. NBA contributed to the discussion and edited the manuscript. All authors approved the results and the final version of this manuscript. MOK revised the manuscript and holds all responsibilities related to this manuscript as the corresponding author.

Corresponding author

Correspondence to Myeong Ok Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental procedures of animal care and treatment minimized the number of mice and their suffering and were approved by the Animal Ethics Committee (IACUC) of the Division of Applied Life Sciences, Department of Biology at Gyeongsang National University, Republic of Korea (Approval ID: 125).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, M.G., Kim, M.W., Jo, M.H. et al. Adiponectin homolog osmotin, a potential anti-obesity compound, suppresses abdominal fat accumulation in C57BL/6 mice on high-fat diet and in 3T3-L1 adipocytes. Int J Obes 43, 2422–2433 (2019). https://doi.org/10.1038/s41366-019-0383-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0383-3

This article is cited by

Search

Quick links