Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring

Abstract

Objective

The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point.

Methods

We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood.

Results

Maternal HF feeding during lactation had no effect on mothers’ body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming.

Conclusions

Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.

    Article  PubMed  Google Scholar 

  2. Lukaszewski MA, Eberle D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab. 2013;305:E1195–207.

    Article  CAS  PubMed  Google Scholar 

  3. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95:47–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115:1367–77.

    Article  PubMed  Google Scholar 

  5. Rudolph MC, Young BE, Lemas DJ, Palmer CE, Hernandez TL, Barbour LA, et al. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int J Obes. 2017;41:510–7.

    Article  CAS  Google Scholar 

  6. Patel MS, Srinivasan M. Metabolic programming in the immediate postnatal life. Ann Nutr Metab. 2011;58(Suppl. 2):18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes. 2012;61:2833–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol. 2014;211:237 e1–237 e13.

    Article  Google Scholar 

  9. Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156:495–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carberry AE, Colditz PB, Lingwood BE. Body composition from birth to 4.5 months in infants born to non-obese women. Pediatr Res. 2010;68:84–8.

    Article  PubMed  Google Scholar 

  11. Birsoy K, Berry R, Wang T, Ceyhan O, Tavazoie S, Friedman JM, et al. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development. 2011;138:4709–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han J, Lee JE, Jin J, Lim JS, Oh N, Kim K, et al. The spatiotemporal development of adipose tissue. Development. 2011;138:5027–37.

    Article  CAS  PubMed  Google Scholar 

  13. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19:1338–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest. 1979;63:239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.

    Article  CAS  PubMed  Google Scholar 

  16. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology. 2013;154:4113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang X, Yang Q, Fu X, Rogers CJ, Wang B, Pan H, et al. Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring mice. J Physiol. 2016;594:4453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lecoutre S, Oger F, Pourpe C, Butruille L, Marousez L, Dickes-Coopman A, et al. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Mol Metab. 2017;6:922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lecoutre S, Pourpe C, Butruille L, Marousez L, Laborie C, Guinez C, et al. Reduced PPARgamma2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB J. 2018;32:2768–78.

    Article  PubMed  Google Scholar 

  20. Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018;15:8–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lecoutre S, Deracinois B, Laborie C, Eberle D, Guinez C, Panchenko PE, et al. Depot- and sex-specific effects of maternal obesity in offspring’s adipose tissue. J Endocrinol. 2016;230:39–53.

    Article  CAS  PubMed  Google Scholar 

  22. Gors S, Kucia M, Langhammer M, Junghans P, Metges CC. Technical note: Milk composition in mice—methodological aspects and effects of mouse strain and lactation day. J Dairy Sci. 2009;92:632–7.

    Article  CAS  PubMed  Google Scholar 

  23. Pedrono F, Boulier-Monthean N, Catheline D, Legrand P. Impact of a standard rodent chow diet on tissue n-6 fatty acids, delta9-desaturation index, and plasmalogen mass in rats fed for one year. Lipids. 2015;50:1069–82.

    Article  CAS  PubMed  Google Scholar 

  24. Jones BH, Maher MA, Banz WJ, Zemel MB, Whelan J, Smith PJ, et al. Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol. 1996;271:E44–9.

    CAS  PubMed  Google Scholar 

  25. Mutch DM. Identifying regulatory hubs in obesity with nutrigenomics. Curr Opin Endocrinol Diabetes. 2006;13:431–7.

    Article  CAS  Google Scholar 

  26. Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care. 2011;14:520–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cedernaes J, Alsio J, Vastermark A, Riserus U, Schioth HB. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. Lipids Health Dis. 2013;12:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yew Tan C, Virtue S, Murfitt S, Roberts LD, Phua YH, Dale M, et al. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Sci Rep. 2015;5:18366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Man WC, Miyazaki M, Chu K, Ntambi J. Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J Lipid Res. 2006;47:1928–39.

    Article  CAS  PubMed  Google Scholar 

  30. Mihara K. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem. 1990;108:1022–9.

    Article  CAS  PubMed  Google Scholar 

  31. ALJohani AM, Syed DN, Ntambi JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab. 2017;28:831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40:1549–58.

    Article  CAS  PubMed  Google Scholar 

  33. Soccio RE, Chen ER, Rajapurkar SR, Safabakhsh P, Marinis JM, Dispirito JR, et al. Genetic variation determines PPARgamma function and anti-diabetic drug response in vivo. Cell. 2015;162:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, et al. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 2008;22:2953–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bray GA, Lee M, Bray TL. Weight gain of rats fed medium-chain triglycerides is less than rats fed long-chain triglycerides. Int J Obes. 1980;4:27–32.

    CAS  PubMed  Google Scholar 

  36. Geliebter A, Torbay N, Bracco EF, Hashim SA, Van Itallie TB. Overfeeding with medium-chain triglyceride diet results in diminished deposition of fat. Am J Clin Nutr. 1983;37:1–4.

    Article  CAS  PubMed  Google Scholar 

  37. Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes. 2013;20:56–61.

    Article  CAS  PubMed  Google Scholar 

  38. Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;7(Suppl. 2):112–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53:227–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao M, Vishvanath L, Busbuso NC, Hepler C, Shan B, Sharma AX, et al. De novo adipocyte differentiation from Pdgfrbeta(+) preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun. 2018;9:890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Carobbio S, Hagen RM, Lelliott CJ, Slawik M, Medina-Gomez G, Tan CY, et al. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes. 2013;62:3697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolak M, Yki-Jarvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P, et al. Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab. 2007;92:720–4.

    Article  CAS  PubMed  Google Scholar 

  44. Yao-Borengasser A, Rassouli N, Varma V, Bodles AM, Rasouli N, Unal R, et al. Stearoyl-coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. J Clin Endocrinol Metab. 2008;93:4431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flowers MT, Ade L, Strable MS, Ntambi JM. Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J Lipid Res. 2012;53:1646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ralston JC, Badoud F, Cattrysse B, McNicholas PD, Mutch DM. Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis. Int J Obes. 2014;38:1449–56.

    Article  CAS  Google Scholar 

  47. Ralston JC, Mutch DM. SCD1 inhibition during 3T3-L1 adipocyte differentiation remodels triacylglycerol, diacylglycerol and phospholipid fatty acid composition. Prostaglandins Leukot Essent Fat Acids. 2015;98:29–37.

    Article  CAS  Google Scholar 

  48. Dragos SM, Bergeron KF, Desmarais F, Suitor K, Wright DC, Mounier C, et al. Reduced SCD1 activity alters markers of fatty acid reesterification, glyceroneogenesis, and lipolysis in murine white adipose tissue and 3T3-L1 adipocytes. Am J Physiol Cell Physiol. 2017;313:C295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hyun CK, Kim ED, Flowers MT, Liu X, Kim E, Strable M, et al. Adipose-specific deletion of stearoyl-CoA desaturase 1 up-regulates the glucose transporter GLUT1 in adipose tissue. Biochem Biophys Res Commun. 2010;399:480–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu MJ, et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 2016;6:34345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, et al. CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene. 2013;32:4519–28.

    Article  CAS  PubMed  Google Scholar 

  54. Fradin D, Boelle PY, Belot MP, Lachaux F, Tost J, Besse C, et al. Genome-wide methylation analysis identifies specific epigenetic marks in severely obese children. Sci Rep. 2017;7:46311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, et al. Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect. 2017;125:511–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fujiki K, Shinoda A, Kano F, Sato R, Shirahige K, Murata M. PPARgamma-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun. 2013;4:2262.

    Article  PubMed  CAS  Google Scholar 

  57. Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun. 2018;9:636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6:1711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eriksen KG, Christensen SH, Lind MV, Michaelsen KF. Human milk composition and infant growth. Curr Opin Clin Nutr Metab Care. 2018;21:200–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Valérie Montel, Anne Dickes-Coopman, and Phexmar animal housing facility for excellent technical support, BICeL facility for microscopy, and Joel Haas for critical review of the manuscript. This study was supported by grants of the French Ministry of Higher Education and Research, of Lille University (BQR 2014) and from the French “Heart and Arteries” Foundation. Laura Butruille and Lucie Marousez were supported by grants from Metropole Européenne Lilloise (MEL) and Conseil Régional des Hauts-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Eberlé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butruille, L., Marousez, L., Pourpe, C. et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes 43, 2381–2393 (2019). https://doi.org/10.1038/s41366-018-0310-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0310-z

This article is cited by

Search

Quick links