Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

In utero dioxin exposure and cardiometabolic risk in the Seveso Second Generation Study

Abstract

Background/objectives

In utero exposure to endocrine-disrupting compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may alter risk of obesity and related metabolic disease later in life. We examined the relationship of prenatal exposure to TCDD with obesity and metabolic syndrome (MetS) in children born to a unique cohort of TCDD-exposed women resulting from a 1976 explosion in Seveso, Italy.

Subjects/methods

In 2014, nearly 40 years after the explosion, we enrolled 611 post-explosion offspring, 2 to 39 years of age, in the Seveso Second Generation Study. In utero TCDD exposure was defined primarily as TCDD concentration measured in maternal serum collected soon after the explosion and alternately as TCDD estimated at pregnancy. We measured height, weight, waist circumference, body fat, blood pressure, and fasting blood levels of lipids and glucose, which were combined to assess body mass index (BMI) and MetS.

Results

Children (314 female, 297 male) averaged 23.6 (±6.0) years of age. Among the 431 children ≥18 years, a 10-fold increase in initial maternal TCDD concentration was inversely associated with BMI in daughters (adj-β = −0.99 kg/m2; 95% CI -1.86, -0.12), but not sons (adj-β = 0.41 kg/m2; 95% CI −0.35, 1.18) (p-int = 0.02). A similar relationship was found in the younger children (2–17 years); a 10-fold increase in initial maternal TCDD was inversely associated with BMI z-score (adj-β = −0.59 kg/m2; 95% CI −1.12, −0.06) among daughters, but not sons (adj-β = 0.04 kg/m2; 95% CI −0.34, 0.41) (p-int = 0.03). In contrast, in sons only, initial maternal TCDD was associated with increased risk for MetS (adj-RR = 2.09, 95% CI 1.09, 4.02). Results for TCDD estimated at pregnancy were comparable.

Conclusions

These results suggest prenatal TCDD exposure alters cardiometabolic endpoints in a sex-specific manner. In daughters, in utero TCDD is inversely associated with adiposity measures. In sons, in utero TCDD is associated with increased risk for MetS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

  2. GBMC. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86.

    Article  Google Scholar 

  3. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

  4. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  CAS  PubMed  Google Scholar 

  5. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

    PubMed  PubMed Central  Google Scholar 

  6. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

    Article  CAS  PubMed  Google Scholar 

  7. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011;73:135–62.

    Article  CAS  PubMed  Google Scholar 

  8. Desai M, Jellyman JK, Ross MG. Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes. 2015;39:633.

    Article  CAS  Google Scholar 

  9. Zook D, Rappe C. Environmental sources, distribution, and fate. In: Schecter A, editor. Dioxins and Health. New York: Plenum Press; 1994. p. 79–113.

  10. Birnbaum LS, Tuomisto J. Non-carcinogenic effects of TCDD in animals. Food Addit Contam. 2000;17:275–88.

    Article  CAS  PubMed  Google Scholar 

  11. Pirkle JL, Wolfe WH, Patterson DG, Needham LL, Michalek JE, Miner JC, et al. Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam Veterans of Operation Ranch Hand. J Toxicol Environ Health. 1989;27:165–71.

    Article  CAS  PubMed  Google Scholar 

  12. Schecter A, Papke O, Ball M. Evidence for transplacental transfer of dioxins from mother to fetus: chlorinated dioxin and dibenzofuran in the livers of stillborn infants. Chemosphere. 1990;21:1017–22.

    Article  CAS  Google Scholar 

  13. Kirkley AG, Sargis RM. Environmental endocrine disruption of energy metabolism and cardiovascular risk. Curr Diab Rep. 2014;14:494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Enan E, Liu PC, Matsumura F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes reduction of glucose transporting activities in the plasma membranes of adipose tissue and pancreas from the guinea pig. J Biol Chem. 1992;267:19785–91.

    CAS  PubMed  Google Scholar 

  15. Enan E, Matsumura F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced alterations in protein phosphorylation in guinea pig adipose tissue. J Biochem Toxicol. 1993;8:89–99.

    Article  CAS  PubMed  Google Scholar 

  16. Kurita H, Yoshioka W, Nishimura N, Kubota N, Kadowaki T, Tohyama C. Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol. 2009;29:689–94.

    Article  CAS  PubMed  Google Scholar 

  17. Kopf PG, Huwe JK, Walker MK. Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovasc Toxicol. 2008;8:181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seefeld MD, Keesey RE, Peterson RE. Body weight regulation in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 1984;76:526–36.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu BT, Gallo MA, Burger CW Jr., Meeker RJ, Cai MX, Xu S, et al. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin administration and high-fat diet on the body weight and hepatic estrogen metabolism in female C3H/HeN mice. Toxicol Appl Pharmacol. 2008;226:107–18.

    Article  CAS  PubMed  Google Scholar 

  20. Aragon AC, Goens MB, Carbett E, Walker MK. Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure sensitizes offspring to angiotensin II-induced hypertension. Cardiovasc Toxicol. 2008;8:145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugai E, Yoshioka W, Kakeyama M, Ohsako S, Tohyama C. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates dysregulation of the lipid metabolism in mouse offspring fed a high-calorie diet. J Appl Toxicol. 2014;34:296–306.

    Article  CAS  PubMed  Google Scholar 

  22. van Esterik JC, Verharen HW, Hodemaekers HM, Gremmer ER, Nagarajah B, Kamstra JH, et al. Compound- and sex-specific effects on programming of energy and immune homeostasis in adult C57BL/6JxFVB mice after perinatal TCDD and PCB 153. Toxicol Appl Pharmacol. 2015;289:262–75.

    Article  CAS  PubMed  Google Scholar 

  23. Rashid CS, Carter LG, Hennig B, Pearson KJ. Perinatal Polychlorinated Biphenyl 126 Exposure Alters Offspring Body Composition. J Pediatr Biochem. 2013;3:47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  24. La Merrill M, Baston DS, Denison MS, Birnbaum LS, Pomp D, Threadgill DW. Mouse breast cancer model-dependent changes in metabolic syndrome-associated phenotypes caused by maternal dioxin exposure and dietary fat. Am J Physiol Endocrinol Metab. 2009;296:E203–10.

    Article  CAS  PubMed  Google Scholar 

  25. Leijs MM, Koppe JG, Vulsma T, Olie K, van Aalderen WMC, de Voogt P, et al. Alterations in the programming of energy metabolism in adolescents with background exposure to dioxins, dl-PCBs and PBDEs. PLoS One. 2017;12:e0184006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iszatt N, Stigum H, Govarts E, Murinova LP, Schoeters G, Trnovec T, et al. Perinatal exposure to dioxins and dioxin-like compounds and infant growth and body mass index at seven years: a pooled analysis of three European birth cohorts. Environ Int. 2016;94:399–407.

    Article  CAS  PubMed  Google Scholar 

  27. Tai PT, Nishijo M, Nghi TN, Nakagawa H, Van Luong H, Anh TH, et al. Effects of perinatal dioxin exposure on development of children during the first 3 years of life. J Pediatr. 2016;175:159–66.e2.

    Article  CAS  PubMed  Google Scholar 

  28. Delvaux I, Van Cauwenberghe J, Den Hond E, Schoeters G, Govarts E, Nelen V, et al. Prenatal exposure to environmental contaminants and body composition at age 7-9 years. Environ Res. 2014;132:24–32.

    Article  CAS  PubMed  Google Scholar 

  29. Wohlfahrt-Veje C, Audouze K, Brunak S, Antignac JP, le Bizec B, Juul A, et al. Polychlorinated dibenzo-p-dioxins, furans, and biphenyls (PCDDs/PCDFs and PCBs) in breast milk and early childhood growth and IGF1. Reproduction. 2014;147:391–9.

    Article  CAS  PubMed  Google Scholar 

  30. Su PH, Chen JY, Chen JW, Wang SL. Growth and thyroid function in children with in utero exposure to dioxin: a 5-year follow-up study. Pediatr Res. 2010;67:205–10.

    Article  CAS  PubMed  Google Scholar 

  31. di Domenico A, Silano V, Viviano G, Zapponi G. Accidental release of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at Seveso, Italy. II. TCDD distribution in the soil surface layer. Ecotoxicol Environ Saf. 1980;4:298–320.

    Article  PubMed  Google Scholar 

  32. Mocarelli P, Pocchiari F, Nelson N. Preliminary report: 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure to humans–Seveso, Italy. MMWR Morb Mortal Wkly Rep. 1988;37:733–6.

    Google Scholar 

  33. Needham L, Patterson DG, VN H. Levels of TCDD in selected human populations and their relevance to human risk assessment. In: Gallo MA, editor. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1991. 229–57 p.

  34. Warner M, Mocarelli P, Brambilla P, Wesselink A, Samuels S, Signorini S, et al. Diabetes, metabolic syndrome, and obesity in relation to serum dioxin concentrations: the Seveso women’s health study. Environ Health Perspect. 2013;121:906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eskenazi B, Mocarelli P, Warner M, Samuels S, Vercellini P, Olive D, et al. Seveso Women’s Health Study: a study of the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on reproductive health. Chemosphere. 2000;40:1247–53.

    Article  CAS  PubMed  Google Scholar 

  36. Eskenazi B, Warner M, Brambilla P, Signorini S, Ames J, Mocarelli P. The Seveso accident: a look at 40years of health research and beyond. Environ Int. 2018;121(Pt 1):71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol. 1997;26(Suppl 1):S152–60.

    Article  PubMed  Google Scholar 

  38. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88(5 Pt 1):2460–70.

    Article  CAS  PubMed  Google Scholar 

  39. Patterson DG, Hampton L, Lapeza CR, Belser WT, Green V, Alexander L, et al. High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human serum on a whole-weight and lipid basis for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem. 1987;59:2000–5.

    Article  CAS  PubMed  Google Scholar 

  40. Eskenazi B, Mocarelli P, Warner M, Needham L, Patterson DG, Samuels S, et al. Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy. Environ Health Perspect. 2004;112:22–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patterson DG, Turner WE. Method 28: Measurement of PCDDs, PCDFs, and Coplanar PCBs in Serum by HRGC/ID-HRMS. Atanta: National Center for Enviromental Health, CDC; 2005.

  42. Warner M, Mocarelli P, Brambilla P, Wesselink A, Patterson DG, Turner WE, et al. Serum TCDD and TEQ concentrations among Seveso women, 20 years after the explosion. J Expo Sci Environ Epidemiol. 2014;24:588–94.

    Article  CAS  PubMed  Google Scholar 

  43. Akins JR, Waldrep K, Bernert JT Jr. The estimation of total serum lipids by a completely enzymatic ‘summation’ method. Clin Chim Acta. 1989;184:219–26.

    Article  CAS  PubMed  Google Scholar 

  44. Hornung RW, Reed LD. Estimation of average concentration in the presence of non-detectable values. Appl Occup Environ Hyg. 1990;5:48–51.

    Article  Google Scholar 

  45. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity. Geneva: World Health Organization; 1998.

  46. Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest. 2006;29:581–93.

    Article  CAS  PubMed  Google Scholar 

  47. Cook S, Auinger P, Huang TT. Growth curves for cardio-metabolic risk factors in children and adolescents. J Pediatr. 2009;155:S6 e15–26.

    Google Scholar 

  48. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.

    Article  PubMed  Google Scholar 

  49. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–94.

    Article  CAS  PubMed  Google Scholar 

  50. Stata Corp. Stata Statistical Software: Release 13.1. College Station: Stata Press; 2013.

    Google Scholar 

  51. Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta. 2003;1619:263–8.

    Article  CAS  PubMed  Google Scholar 

  52. Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X. The aryl hydrocarbon receptor system. Drug Metabol Drug Interact. 2012;27:3–8.

    Article  CAS  PubMed  Google Scholar 

  53. Linden J, Lensu S, Tuomisto J, Pohjanvirta R. Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol. 2010;31:452–78.

    Article  CAS  PubMed  Google Scholar 

  54. Jaeger C, Tischkau SA. Role of aryl hydrocarbon receptor in circadian clock disruption and metabolic dysfunction. Environ Health Insights. 2016;10:133–41.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sato S, Shirakawa H, Tomita S, Ohsaki Y, Haketa K, Tooi O, et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol Appl Pharmacol. 2008;229:10–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kim MJ, Pelloux V, Guyot E, Tordjman J, Bui LC, Chevallier A, et al. Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells. Environ Health Perspect. 2012;120:508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cimafranca MA, Hanlon PR, Jefcoate CR. TCDD administration after the pro-adipogenic differentiation stimulus inhibits PPARgamma through a MEK-dependent process but less effectively suppresses adipogenesis. Toxicol Appl Pharmacol. 2004;196:156–68.

    Article  CAS  PubMed  Google Scholar 

  58. Aylward LL, Hays SM. Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol. 2002;12:319–28.

    Article  CAS  PubMed  Google Scholar 

  59. Eskenazi B, Mocarelli P, Warner M, Chee WY, Gerthoux PM, Samuels S, et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect. 2003;111:947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wesselink A, Warner M, Samuels S, Parigi A, Brambilla P, Mocarelli P, et al. Maternal dioxin exposure and pregnancy outcomes over 30 years of follow-up in Seveso. Environ Int. 2014;63:143–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our collaborators at CDC including Donald G. Patterson, Jr., Wayman Turner, and the late Larry L. Needham for their significant contributions to exposure assessment and sample analysis in the Seveso Women’s Health and Second Generation Studies, the field staff at Hospital of Desio including Nicole Gelpi and Claudia Siracusa for coordinating data collection, and the participants and their families. This study was supported by Grant Numbers F06 TW02075-01 from the National Institutes of Health, R01 ES07171 and 2P30-ESO01896-17 from the National Institute of Environmental Health Sciences, R82471 from the U.S. Environmental Protection Agency, and #2896 from Regione Lombardia and Fondazione Lombardia Ambiente, Milan, Italy. Ms. JA was supported by F31ES026488 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Warner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warner, M., Rauch, S., Ames, J. et al. In utero dioxin exposure and cardiometabolic risk in the Seveso Second Generation Study. Int J Obes 43, 2233–2243 (2019). https://doi.org/10.1038/s41366-018-0306-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0306-8

This article is cited by

Search

Quick links