Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Biology

Lycopene attenuates western-diet-induced cognitive deficits via improving glycolipid metabolism dysfunction and inflammatory responses in gut–liver–brain axis

Abstract

Background/objectives

The aim of the current study was to investigate the inhibitory effect of lycopene (LYC), a major carotenoid present in tomato, on high-fat and high-fructose western diet (HFFD)-induced cognitive impairments and the protective effects on HFFD-elicited insulin resistance, lipid metabolism dysfunction and inflammatory responses in the gut–liver–brain axis.

Subjects/methods

We randomly assigned 3-month-old C57BL/6 J mice to three groups with different diets: the control group, HFFD group and HFFD + LYC group (LYC, 0.03% w/w, mixed into high-fat diet) for 10 weeks.

Results

The results of the Y-maze task and Morris water maze tests demonstrated that LYC attenuated HFFD-induced memory loss. Moreover, LYC suppressed HFFD-elicited synaptic dysfunction and increased the expressions of SNAP-25 and PSD-95. Furthermore, LYC ameliorated insulin resistance, lipid metabolism dysfunction and inflammatory responses in the mouse brain and liver. LYC also prevente.d intestinal barrier integrity damages and decreased the level of circulating LPS.

Conclusions

These results demonstrated that LYC ameliorated HFFD-induced cognitive impairments in a mouse model by improving insulin resistance, lipid metabolism dysfunction and inflammatory responses in the gut–liver–brain axis. These findings indicate that LYC might be a nutritional strategy for western diet-induced dysfunction of the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van der Heide LP, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79:205–21.

    Article  Google Scholar 

  2. Plum L, Schubert M, Brüning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16:59–65.

    Article  CAS  Google Scholar 

  3. Zhao W-Q, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177:125–34.

    Article  CAS  Google Scholar 

  4. Lim Y, Cho H, Kim E-K. Brain metabolism as a modulator of autophagy in neurodegeneration. Brain Res. 2016;1649:158–65.

    Article  CAS  Google Scholar 

  5. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell . 2010;141:656–67.

    Article  CAS  Google Scholar 

  6. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660–71.

    Article  CAS  Google Scholar 

  7. Liu Z, Sun Y, Qiao Q, Zhao T, Zhang W, Ren B, et al. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system. Food Funct. 2017;8:710–9.

    Article  CAS  Google Scholar 

  8. Granholm A-CE, Freeman L. Long-term treatment with a high-fat diet causes memory loss and breached blood-brain barrier in aged rats. Alzheimer’s Dement. 2010;6:e31.

    Article  Google Scholar 

  9. Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, et al. Cognitive impairment following high-fat diet consumption is associated with brain inflammation. J Neuroimmunol. 2010;219:25–32.

    Article  CAS  Google Scholar 

  10. Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, et al. High-fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem. 2010;114:1581–9.

    Article  CAS  Google Scholar 

  11. Rafati A, Anvari E, Noorafshan A. High fructose solution induces neuronal loss in the nucleus of the solitary tract of rats. Folia Neuropathol. 2013;51:214–21.

    Article  Google Scholar 

  12. Ghazalpour A, Cespedes I, Bennett BJ, Allayee H. Expanding role of gut microbiota in lipid metabolism. Curr Opin Lipidol. 2016;27:141–7.

    Article  CAS  Google Scholar 

  13. Cohn J, Kamili A, Wat E, Chung RW, Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–27.

    Article  CAS  Google Scholar 

  14. Wang DQH, Tazuma S, Cohen DE, Carey MC. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am J Physiol Gastrointest Liver Physiol. 2003;285:G494–G502.

    Article  CAS  Google Scholar 

  15. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375:2267–77.

    Article  CAS  Google Scholar 

  16. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56:952–64.

    Article  CAS  Google Scholar 

  17. Kirpich IA, Feng W, Wang Y, Liu Y, Barker DF, Barve SS, et al. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res. 2012;36:835–46.

    Article  CAS  Google Scholar 

  18. Noble EE, Hsu TM, Kanoski SE. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci. 2017;11:9.

    Article  Google Scholar 

  19. Frazier TH, DiBaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. J Parenter Enter Nutr. 2011;35:14S–20S.

    Article  CAS  Google Scholar 

  20. Wang J, Li L, Wang Z, Cui Y, Tan X, Yuan T, et al. Supplementation of lycopene attenuates lipopolysaccharide-induced amyloidogenesis and cognitive impairments via mediating neuroinflammation and oxidative stress. J Nutr Biochem. 2018;56:16–25.

    Article  CAS  Google Scholar 

  21. Zhao B, Ren B, Guo R, Zhang W, Ma S, Yao Y, et al. Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food Chem Toxicol. 2017;109:505–16.

    Article  CAS  Google Scholar 

  22. Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem. 2015;26:736–44.

    Article  CAS  Google Scholar 

  23. Zhao B, Liu H, Wang J, Liu P, Tan X, Ren B, et al. Lycopene supplementation attenuates oxidative stress, neuroinflammation, and cognitive impairment in aged CD-1 mice. J Agric Food Chem. 2018;66:3127–36.

    Article  CAS  Google Scholar 

  24. Wang Z, Fan J, Wang J, Li Y, Xiao L, Duan D, et al. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats. Neurosci Lett. 2016;627:185–91.

    Article  CAS  Google Scholar 

  25. Yin Q, Ma Y, Hong Y, Hou X, Chen J, Shen C, et al. Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-drinking insulin resistant rats. Neuropharmacology. 2014;86:389–96.

    Article  CAS  Google Scholar 

  26. Liu Z, Liu X, Luo S, Chu C, Wu D, Liu R, et al. Extract of sesame cake and sesamol alleviate chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits. J Funct Foods. 2018;42:237–47.

    Article  CAS  Google Scholar 

  27. Liu Q, Chen Y, Shen C, Xiao Y, Wang Y, Liu Z, et al. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB. FASEB J. 2017;31:1494–507.

    Article  CAS  Google Scholar 

  28. Mi Y, Qi G, Fan R, Ji X, Liu Z, Liu X. EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1575–89.

    Article  CAS  Google Scholar 

  29. Liu Z, Qiao Q, Sun Y, Chen Y, Ren B, Liu X. Sesamol ameliorates diet-induced obesity in C57BL/6J mice and suppresses adipogenesis in 3T3-L1 cells via regulating mitochondria-lipid metabolism. Mol Nutr Food Res. 2017;61:1600717.

    Article  Google Scholar 

  30. Qi G, Mi Y, Fan R, Li R, Wang Y, Li X, et al. Tea polyphenols ameliorate hydrogen peroxide- and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver. RSC Adv. 2017;7:32198–208.

    Article  CAS  Google Scholar 

  31. Calvo-Ochoa E, Hernández-Ortega K, Ferrera P, Morimoto S, Arias C. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab. 2014;34:1001–8.

    Article  CAS  Google Scholar 

  32. Liu Z, Chen Y, Qiao Q, Sun Y, Liu Q, Ren B, et al. Sesamol supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of nuclear factor kappaB. Mol Nutr Food Res. 2017;61:1770051.

    Article  Google Scholar 

  33. Mi Y, Qi G, Fan R, Qiao Q, Sun Y, Gao Y, et al. EGCG ameliorates high-fat– and high-fructose–induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J. 2017;31:4998–5011.

    Article  CAS  Google Scholar 

  34. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol. 2005;58:730–5.

    Article  CAS  Google Scholar 

  35. Lin K-T, Hsu S-W, Lai F-Y, Chang T-C, Shi L-S, Lee S-Y. Rhodiola crenulata extract regulates hepatic glycogen and lipid metabolism via activation of the AMPK pathway. BMC Complement Altern Med. 2016;16:127–37.

    Article  Google Scholar 

  36. Piña-Zentella RM, Rosado JL, Gallegos-Corona MA, Madrigal-Pérez LA, García OP, Ramos-Gomez M. Lycopene improves diet-mediated recuperation in rat model of nonalcoholic fatty liver disease. J Med Food. 2016;19:607–14.

    Article  Google Scholar 

  37. Kim AY, Jeong Y-J, Park YB, Lee M-K, Jeon S-M, McGregor RA, et al. Dose dependent effects of lycopene enriched tomato-wine on liver and adipose tissue in high-fat diet fed rats. Food Chem. 2012;130:42–48.

    Article  CAS  Google Scholar 

  38. Svendsen B, Pedersen J, Albrechtsen NJW, Hartmann B, Toräng S, Rehfeld JF, et al. An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology. 2015;156:847–57.

    Article  CAS  Google Scholar 

  39. Doo E, Lee OY, Lee HL, Jun DW, Yoon BC, Choi HS, et al. The effect of high-fat diet, high-fructose diet and soft drink on intestinal integrity and inflammation. Gastroenterology. 2014;146:S–492.

    Google Scholar 

  40. Caesar R, Fåk F, Bäckhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med. 2010;268:320–8.

    Article  CAS  Google Scholar 

  41. Singh DP, Kondepudi KK, Chopra K, Bishnoi M. Isomalto-oligosaccharides, lycopene and their combination (co-biotic) ameliorated high-fat diet-induced Gut derangements, metabolic endotoxemia, adiposity and Non-alcoholic fatty liver in mice. Int Congr Obes. 2016;17:1467–7881.

    Google Scholar 

  42. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

    Article  Google Scholar 

  43. Janovská A, Hatzinikolas G, Staikopoulos V, McInerney J, Mano M, Wittert GA. AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity. Mol Cell Endocrinol. 2008;284:1–10.

    Article  Google Scholar 

  44. Cho YS, Lee JI, Shin D, Kim HT, Jung HY, Lee TG, et al. Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK. Biochem Biophys Res Commun. 2010;391:187–92.

    Article  CAS  Google Scholar 

  45. Davies M, Cook N, Gleich K, Katerelos M, Fraser S, Kemp B, et al. Reduced association of the metabolic regulators AMPK and ACC1 with NKCC2 in mice a high fat diet. Nephrology . 2011;16:33–34.

    Google Scholar 

  46. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  CAS  Google Scholar 

  47. Abuelheiga L, Matzuk MM, Abohashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001;291:1623–6.

    Google Scholar 

  48. Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol. 2010;16:1304–13.

    Article  CAS  Google Scholar 

  49. Wang B, Rong X, Duerr Mark A, Hermanson Daniel J, Hedde Per N, Wong Jinny S, et al. Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet. Cell Metab. 2016;23:492–504.

    Article  CAS  Google Scholar 

  50. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–92.

    Article  CAS  Google Scholar 

  51. Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87:1219–23.

    Article  CAS  Google Scholar 

  52. Tachiyama G, Sakon M, Kambayashi J, Iijima S, Tsujinaka T, Mori T. Endogenous endotoxemia in patients with liver cirrhosis —A quantitative analysis of endotoxin in portal and peripheral blood. Jpn J Surg. 1988;18:403–8.

    Article  CAS  Google Scholar 

  53. Houser MC, Tansey MG. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Park Dis. 2017;3:3–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (No. 2016YFD0400601), Science and Technology Coordination Project of Innovation in Shaanxi province (No. 2014KTCL02-07), Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20170201), General Financial grant from the China Postdoctoral Science Foundation (2016M602867) and Fundamental Research Funds for the Central Universities (No. 2452017141).

Author contributions

Conception and design of research: JW and XL; performed experiments: JW, Zhuo Wang, BL and YQ; analysed data: JW, XT, TY and Zihan Wang; interpretation of experimental results: JW, ZL and XL; prepared figures: ZL and JW; drafted paper: JW and ZL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Liu or Xuebo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Z., Li, B. et al. Lycopene attenuates western-diet-induced cognitive deficits via improving glycolipid metabolism dysfunction and inflammatory responses in gut–liver–brain axis. Int J Obes 43, 1735–1746 (2019). https://doi.org/10.1038/s41366-018-0277-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0277-9

This article is cited by

Search

Quick links