Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Epigenetics

Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva

Abstract

Background

Corticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.

Methods

We investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children’s blood cells collected at mid-childhood (n = 239, age: 6.7–10.3 years) additionally adjusting for the children’s age at blood drawn.

Results

Maternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate <0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P< 0.05, β= 0.64, SE = 0.30).

Conclusion

In our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonfiglio JJ, Inda C, Refojo D, Holsboer F, Arzt E, Silberstein S. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved. Neuroendocrinology. 2011;94:12–20.

    CAS  PubMed  Google Scholar 

  2. Sandman CA, Davis EP, Buss C, Glynn LM. Prenatal programming of human neurological function. Int J Pept. 2011;2011:837596.

    PubMed  PubMed Central  Google Scholar 

  3. Emanuel RL, Robinson BG, Seely EW, Graves SW, Kohane I, Saltzman D, et al. Corticotrophin releasing hormone levels in human plasma and amniotic fluid during gestation. Clin Endocrinol (Oxf). 1994;40:257–62.

    CAS  Google Scholar 

  4. Sandman CA, Glynn L, Schetter CD, Wadhwa P, Garite T, Chicz-DeMet A, et al. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides. 2006;27:1457–63.

    CAS  PubMed  Google Scholar 

  5. Barber K, Mussin E, Taylor DK. Fetal exposure to involuntary maternal smoking and childhood respiratory disease. Ann Allergy Asthma Immunol. 1996;76:427–30.

    CAS  PubMed  Google Scholar 

  6. Baibazarova E, van de Beek C, Cohen-Kettenis PT, Buitelaar J, Shelton KH, van Goozen SHM. Influence of prenatal maternal stress, maternal plasma cortisol and cortisol in the amniotic fluid on birth outcomes and child temperament at 3 months. Psychoneuroendocrinology. 2013;38:907–15.

    CAS  PubMed  Google Scholar 

  7. Trainer PJ. Corticosteroids and pregnancy. Semin Reprod Med. 2002;20:375–80.

    CAS  PubMed  Google Scholar 

  8. Wadhwa PD, Garite TJ, Porto M, Glynn L, Chicz-DeMet A, Dunkel-Schetter C, et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol. 2004;191:1063–9.

    CAS  PubMed  Google Scholar 

  9. Alexander N, Rosenlöcher F, Stalder T, Linke J, Distler W, Morgner J, et al. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J Clin Endocrinol Metab. 2012;97:3538–44.

    CAS  PubMed  Google Scholar 

  10. Gillman MW, Rich-Edwards JW, Huh S, Majzoub JA, Oken E, Taveras EM, et al. Maternal corticotropin-releasing hormone levels during pregnancy and offspring adiposity. Obes Silver Spring Md. 2006;14:1647–53.

    CAS  Google Scholar 

  11. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.

    CAS  PubMed  Google Scholar 

  12. O’Connor DM, Blache D, Hoggard N, Brookes E, Wooding FBP, Fowden AL, et al. Developmental control of plasma leptin and adipose leptin messenger ribonucleic acid in the ovine fetus during late gestation: role of glucocorticoids and thyroid hormones. Endocrinology. 2007;148:3750–7.

    PubMed  Google Scholar 

  13. McMillen IC, Adam CL, Mühlhäusler BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005;565:9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y-C, Huang Y-H, Sheen J-M, Tain Y-L, Yu H-R, Chen C-C, et al. Prenatal dexamethasone exposure programs the development of the pancreas and the secretion of insulin in rats. Pediatr Neonatol. 2017;58:135–44.

    PubMed  Google Scholar 

  15. Sheen J-M, Hsieh C-S, Tain Y-L, Li S-W, Yu H-R, Chen C-C, et al. Programming effects of prenatal glucocorticoid exposure with a postnatal high-fat diet in diabetes mellitus. Int J Mol Sci. 2016;17:533.

    PubMed  PubMed Central  Google Scholar 

  16. Fasting MH, Oken E, Mantzoros CS, Rich-Edwards JW, Majzoub JA, Kleinman K, et al. Maternal levels of corticotropin-releasing hormone during pregnancy in relation to adiponectin and leptin in early childhood. J Clin Endocrinol Metab. 2009;94:1409–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boekelheide K, Blumberg B, Chapin RE, Cote I, Graziano JH, Janesick A, et al. Predicting later-life outcomes of early-life exposures. Environ Health Perspect. 2012;120:1353–61.

    PubMed  PubMed Central  Google Scholar 

  18. Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M. DNA methylation is a reversible biological signal. Proc Natl Acad Sci USA. 1999;96:6107–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2: Mechanisms. Nat Rev Endocrinol. 2014;10:403–11.

    CAS  PubMed  Google Scholar 

  20. Crudo A, Petropoulos S, Moisiadis VG, Iqbal M, Kostaki A, Machnes Z, et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology. 2012;153:3269–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oken E, Baccarelli AA, Gold DR, Kleinman KP, Litonjua AA, De Meo D, et al. Cohort profile: project viva. Int J Epidemiol. 2015;44:37–48.

    PubMed  Google Scholar 

  22. Rich-Edwards JW, Mohllajee AP, Kleinman K, Hacker MR, Majzoub J, Wright RJ, et al. Elevated Midpregnancy Corticotropin-Releasing Hormone Is Associated with Prenatal, But Not Postpartum, Maternal Depression. J Clin Endocrinol Metab. 2008;93:1946–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cardenas A, Rifas-Shiman SL, Agha G, Hivert M-F, Litonjua AA, DeMeo DL et al. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci Rep 2017; 7. https://doi.org/10.1038/s41598-017-00384-5.

  24. Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003;3:6.

    PubMed  PubMed Central  Google Scholar 

  26. Cardenas A, Allard C, Doyon M, Houseman EA, Bakulski KM, Perron P, et al. Validation of a DNA methylation reference panel for the estimation of nucleated cells types in cord blood. Epigenetics. 2016;11:773–9.

    PubMed  PubMed Central  Google Scholar 

  27. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al. Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. PLoS ONE. 2012;7:e41361.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gavrila A, Peng C-K, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab. 2003;88:2838–43.

    CAS  PubMed  Google Scholar 

  29. Boeke CE, Oken E, Kleinman KP, Rifas-Shiman SL, Taveras EM, Gillman MW. Correlations among adiposity measures in school-aged children. BMC Pediatr. 2013;13:99.

    PubMed  PubMed Central  Google Scholar 

  30. CDC growth charts: United States. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/11183293 (accessed 2 Nov2017).

  31. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.

    PubMed  PubMed Central  Google Scholar 

  32. Martin TC, Yet I, Tsai P-C, Bell JT. coMET: visualisation of regional epigenome-wide association scan results and DNA co-methylation patterns. BMC Bioinforma. 2015;16:131.

    CAS  Google Scholar 

  33. Tiao M-M, Huang L-T, Chen C-J, Sheen J-M, Tain Y-L, Chen C-C et al. Melatonin in the regulation of liver steatosis following prenatal glucocorticoid exposure. BioMed Res Int 2014; 2014. https://doi.org/10.1155/2014/942172.

    Article  Google Scholar 

  34. Sugden MC, Langdown ML, Munns MJ, Holness MJ. Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring. Eur J Endocrinol. 2001;145:529–39.

    CAS  PubMed  Google Scholar 

  35. Smith JT, Waddell BJ. Leptin receptor expression in the rat placenta: changes in ob-ra, ob-rb, and ob-re with gestational age and suppression by glucocorticoids. Biol Reprod. 2002;67:1204–10.

    CAS  PubMed  Google Scholar 

  36. Marinoni E, Letizia C, Ciardo F, Corona G, Moscarini M, Iorio RD. Effects of prenatal betamethasone administration on leptin and adiponectin concentrations in maternal and fetal circulation. Am J Obstet Gynecol. 2008;199:141.e1–141.e6.

    Google Scholar 

  37. Melzner I, Scott V, Dorsch K, Fischer P, Wabitsch M, Brüderlein S, et al. Leptin Gene Expression in Human Preadipocytes Is Switched on by Maturation-induced Demethylation of Distinct CpGs in Its Proximal Promoter. J Biol Chem. 2002;277:45420–7.

    CAS  PubMed  Google Scholar 

  38. Houde A-A, Légaré C, Biron S, Lescelleur O, Biertho L, Marceau S et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet 2015; 16. https://doi.org/10.1186/s12881-015-0174-1.

  39. Bouchard L, Thibault S, Guay S-P, Santure M, Monpetit A, St-Pierre J, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33:2436–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dardeno TA, Chou SH, Moon H-S, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol. 2010;31:377–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105:4–13.

    CAS  PubMed  Google Scholar 

  42. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37.

    CAS  PubMed  Google Scholar 

  44. Ren R-X, Shen Y. A meta-analysis of relationship between birth weight and cord blood leptin levels in newborns. World J Pediatr WJP. 2010;6:311–6.

    CAS  PubMed  Google Scholar 

  45. Kadakia R, Zheng Y, Zhang Z, Zhang W, Hou L, Josefson JL. Maternal pre-pregnancy BMI downregulates neonatal cord blood LEP methylation. Pediatr Obes. 2017;12:57–64.

    PubMed  Google Scholar 

  46. Mantzoros CS, Rifas-Shiman SL, Williams CJ, Fargnoli JL, Kelesidis T, Gillman MW. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: a prospective cohort study. Pediatrics. 2009;123:682–9.

    PubMed  Google Scholar 

  47. Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol. 2013;381:160–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, et al. Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect. 2017;125:511–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, et al. Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort. Environ Health Perspect. 2017;125:262–8.

    CAS  PubMed  Google Scholar 

  50. Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics. 2016;12:1–10.

    PubMed  PubMed Central  Google Scholar 

  51. Obermann-Borst SA, Eilers PHC, Tobi EW, Jong FH, de, Slagboom PE, Heijmans BT, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 2013;74:344–9.

    CAS  PubMed  Google Scholar 

  52. García-Cardona MC, Huang F, García-Vivas JM, López-Camarillo C, Navarro BE, del R, et al. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance. Int J Obes. 2014;38:1457–65.

    Google Scholar 

  53. Dunstan J, Bressler JP, Moran TH, Pollak JS, Hirsch AG, Bailey-Davis L et al. Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin Epigenetics 2017; 9. https://doi.org/10.1186/s13148-017-0327-5.

  54. Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem. 2009;65:1–9.

    CAS  PubMed  Google Scholar 

  55. Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003;13:13–22.

    CAS  PubMed  Google Scholar 

  56. Swinny JD, Valentino RJ. Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat. Eur J Neurosci. 2006;24:2481–90.

    PubMed  Google Scholar 

  57. Westphal NJ. CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Front Biosci. 2006;11:1878.

    CAS  PubMed  Google Scholar 

  58. McClennen SJ, Seasholtz AF. Transcriptional regulation of corticotropin-releasing hormone-binding protein gene expression in astrocyte cultures. Endocrinology. 1999;140:4095–103.

    CAS  PubMed  Google Scholar 

  59. McClennen SJ, Cortright DN, Seasholtz AF. Regulation of pituitary corticotropin-releasing hormone-binding protein messenger ribonucleic acid levels by restraint stress and adrenalectomy. Endocrinology. 1998;139:4435–41.

    CAS  PubMed  Google Scholar 

  60. Kertes DA, Kamin HS, Hughes DA, Rodney NC, Bhatt S, Mulligan CJ. Prenatal maternal stress predicts methylation of genes regulating the hypothalamic-pituitary-adrenocortical system in mothers and newborns in the Democratic Republic of Congo. Child Dev. 2016;87:61–72.

    PubMed  PubMed Central  Google Scholar 

  61. Salvi E, Wang Z, Rizzi F, Gong Y, McDonough CW, Padmanabhan S, et al. Genome-wide and gene-based meta-analyses identify novel loci influencing blood pressure response to hydrochlorothiazidenovelty and significance. Hypertension. 2017;69:51–59.

    CAS  PubMed  Google Scholar 

  62. Wain LV, Vaez A, Jansen R, Joehanes R, Van P der M, et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets From blood and the kidney. Hypertens Dallas Tex 1979 2017. https://doi.org/10.1161/HYPERTENSIONAHA.117.09438.

  63. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Salinas YD, Wang L, DeWan AT. Multiethnic genome-wide association study identifies ethnic-specific associations with body mass index in Hispanics and African Americans. BMC Genet. 2016;17:78–78.

    PubMed  PubMed Central  Google Scholar 

  65. Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, et al. Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults. PLoS Genet. 2017;13:e1006528–e1006528.

    PubMed  PubMed Central  Google Scholar 

  66. Urbanek M, Hayes MG, Armstrong LL, Morrison J, Lowe LP, Badon SE, et al. The chromosome 3q25 genomic region is associated with measures of adiposity in newborns in a multi-ethnic genome-wide association study. Hum Mol Genet. 2013;22:3583–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dastani Z, Hivert M-F, Timpson N, Perry JRB, Yuan X, Scott RA et al. Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals. PLoS Genet 2012; 8. https://doi.org/10.1371/journal.pgen.1002607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Logue MW, Smith AK, Wolf EJ, Maniates H, Stone A, Schichman SA, et al. The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics. 2017;9:1363–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to the Project Viva participants and staffs.

Funding

This work was supported by grants from the National Institutes of Health (R01 NR013945, R01 ES021357, R37 HD034568, K24 HD069408, R01 ES016314, and R01 HL111108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-France Hivert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, FY., Rifas-Shiman, S.L., Cardenas, A. et al. Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva. Int J Obes 43, 1244–1255 (2019). https://doi.org/10.1038/s41366-018-0249-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0249-0

This article is cited by

Search

Quick links