Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and population health

Temporal relationship between hyperuricemia and obesity, and its association with future risk of type 2 diabetes

Abstract

Background/objectives:

Although hyperuricemia and obesity are significantly correlated, their temporal relationship and whether this relationship is associated with future risk of diabetes are largely unknown. This study examined temporal relationship between hyperuricemia and obesity, and its association with future risk of type 2 diabetes.

Subjects/methods:

This study examined two longitudinal cohorts totally including 17,044 subjects from China with an average of 6.0 years follow-up. Measurements of body mass index (BMI), waist circumference (WC), percentage of body fat and fasting serum uric acid were obtained at two time points. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between hyperuricemia and obesity, and the association of this temporal relationship with follow-up diabetes.

Results:

In combined data of the two cohorts, the cross-lagged path coefficient (β1 = 0.121; 95% confidence interval (CI): 0.108–0.135) from baseline uric acid to the follow-up BMI was significantly greater than the path coefficient (β2 = 0.055, 95% CI: 0.038–0.072) from baseline BMI to the follow-up uric acid (P = 8.14e−10 for the difference between β1 and β2) with adjustment for covariates. The separate cross-lagged path models of uric acid with WC and percentage of body fat showed temporal patterns similar to that noted for uric acid with BMI. Further, the path coefficient (β1) from baseline uric acid to follow-up BMI in the group with diabetes was significantly greater than without diabetes (P = 0.003 for the difference of β1s in the two groups). BMI partially mediated the association of uric acid with risk of diabetes, and the percentage of mediated-association was estimated at 20.3% (95% CI: 15.7–24.8%). Results of these analyses in the combined data were consistent with those in the two cohorts, respectively.

Conclusions:

These findings indicated that increased uric acid levels probably associated with obesity and type 2 diabetes, and more definite research is needed to define any role for uric acid in relation to these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhole V, Choi JW, Kim SW, de Vera M, Choi H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med. 2010;123:957–61.

    Article  CAS  Google Scholar 

  2. Haslam DW, James WP. Obesity. Lancet. 2005;366:1197–209.

    Article  Google Scholar 

  3. Tanaka K, Ogata S, Tanaka H, Omura K, Honda C, Hayakawa K. The relationship between body mass index and uric acid: a study on Japanese adult twins. Environ Health Prev Med. 2015;20:347–53.

    Article  CAS  Google Scholar 

  4. Wang H, Wang L, Xie R, Dai W, Gao C, Shen P, et al. Association of serum uric acid with body mass index: a cross-sectional study from Jiangsu Province, China. Iran J Public Health. 2014;43:1503–9.

    PubMed  PubMed Central  Google Scholar 

  5. Oyama C, Takahashi T, Oyamada M, Oyamada T, Ohno T, Miyashita M, et al. Serum uric acid as an obesity-related indicator in early adolescence. Tohoku J Exp Med. 2006;209:257–62.

    Article  CAS  Google Scholar 

  6. Johnson RJ, Lanaspa MA, Gaucher EA. Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations. Semin Nephrol. 2011;31:394–9.

    Article  CAS  Google Scholar 

  7. de Oliveira EP, Burini RC. High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr. 2012;4:12.

    Article  Google Scholar 

  8. Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia. Curr Opin Rheumatol. 2013;25:210–6.

    Article  CAS  Google Scholar 

  9. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42:474–80.

    Article  CAS  Google Scholar 

  10. Ishizaka N, Ishizaka Y, Toda A, Tani M, Koike K, Yamakado M, et al. Changes in waist circumference and body mass index in relation to changes in serum uric acid in Japanese individuals. J Rheumatol. 2010;37:410–6.

    Article  CAS  Google Scholar 

  11. Chen W, Li S, Fernandez C, Sun D, Lai CC, Zhang T, et al. Temporal relationship between elevated blood pressure and arterial stiffening among middle-aged black and white adults: the Bogalusa Heart Study. Am J Epidemiol. 2016;183:599–608.

    Article  Google Scholar 

  12. Zhang T, Zhang H, Li Y, Sun D, Li S, Fernandez C, et al. Temporal relationship between childhood body mass index and insulin and its impact on adult hypertension: the Bogalusa Heart Study. Hypertension. 2016;68:818–23.

    Article  CAS  Google Scholar 

  13. Han T, Cheng Y, Tian S, Wang L, Liang X, Duan W, et al. Changes in triglycerides and high-density lipoprotein cholesterol may precede peripheral insulin resistance, with 2-h insulin partially mediating this unidirectional relationship: a prospective cohort study. Cardiovasc Diabetol. 2016;15:154.

    Article  Google Scholar 

  14. Cameron AJ, Boyko EJ, Sicree RA, Zimmet PZ, Söderberg S, Alberti KG, et al. Central obesity as a precursor to the metabolic syndrome in the AusDiab study and Mauritius. Obesity. 2008;16:2707–16.

    Article  CAS  Google Scholar 

  15. Pan A, Teng GG, Yuan JM, Koh WP. Bidirectional association between diabetes and gout: the Singapore Chinese Health Study. Sci Rep. 2016;6:25766.

    Article  Google Scholar 

  16. Norvik JV, Storhaug HM, Ytrehus K, Jenssen TG, Zykova SN, Eriksen BO, et al. Overweight modifies the longitudinal association between uric acid and some components of the metabolic syndrome: the Tromsø Study. BMC Cardiovasc Disord. 2016;16:85.

    Article  Google Scholar 

  17. Ferrara LA, Wang H, Umans JG, Franceschini N, Jolly S, Lee ET, et al. Serum uric acid does not predict incident metabolic syndrome in a population with high prevalence of obesity. Nutr Metab Cardiovasc Dis. 2014;24:1360–4.

    Article  CAS  Google Scholar 

  18. Chien KL, Chen MF, Hsu HC, Chang WT, Su TC, Lee YT, et al. Plasma uric acid and the risk of type 2 diabetes in a Chinese community. Clin Chem. 2008;54:310–6.

    Article  CAS  Google Scholar 

  19. Na L, Wu X, Feng R, Li J, Han T, Lin L, et al. The Harbin Cohort Study on diet, nutrition and chronic non-communicable diseases: study design and baseline characteristics. PLoS ONE. 2015;10:e0122598.

    Article  Google Scholar 

  20. Jöreskog, KG, Sörbom, D. LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago, IL, US: Scientific Software International; Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.; 1993.

  21. Joreskog KG, Sörbom D. LISREL 8: user’s reference guide. Chicago: Scientific Software International, Inc.; 1996.

  22. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R package for causal mediation analysis. J Stat Softw 2014;59:1–38.

  23. Keenan T, Blaha MJ, Nasir K, Silverman MG, Tota-Maharaj R, Carvalho JA, et al. Relation of uric acid to serum levels of high-sensitivity C-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis. Am J Cardiol. 2012;110:1787–92.

    Article  CAS  Google Scholar 

  24. Shafiu M, Johnson RJ, Turner ST, Langaee T, Gong Y, Chapman AB, et al. Urate transporter gene SLC22A12 polymorphisms associated with obesity and metabolic syndrome in Caucasians with hypertension. Kidney Blood Press Res. 2012;35:477–82.

    Article  CAS  Google Scholar 

  25. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287:40732–44.

    Article  CAS  Google Scholar 

  26. Lanaspa MA, Sanchez-Lozada LG, Cicerchi C, Li N, Roncal-Jimenez CA, Ishimoto T, et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS ONE. 2012;7:e47948.

    Article  CAS  Google Scholar 

  27. Lanaspa MA, Cicerchi C, Garcia G, Li N, Roncal-Jimenez CA, Rivard CJ, et al. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS ONE. 2012;7:e48801.

    Article  CAS  Google Scholar 

  28. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307–15.

    Article  CAS  Google Scholar 

  29. Stirpe F, Della CE, Bonetti E, Abbondanza A, Abbati A, De Stefano F. Fructose-induced hyperuricaemia. Lancet. 1970;2:1310–1.

    Article  CAS  Google Scholar 

  30. Akinyanju PA, Qureshi RU, Salter AJ, Yudkin J. Effect of an “atherogenic” diet containing starch or sucrose on the blood lipids of young men. Nature. 1968;218:975–7.

    Article  CAS  Google Scholar 

  31. Raben A, Vasilaras TH, Møller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr. 2002;76:721–9.

    Article  CAS  Google Scholar 

  32. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Ren Physiol. 2006;290:F625–631.

    Article  CAS  Google Scholar 

  33. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA. 2009;106:17787–92.

    Article  CAS  Google Scholar 

  34. Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121:e71–78.

    Article  Google Scholar 

  35. Lyngdoh T, Marques-Vidal P, Paccaud F, Preisig M, Waeber G, Bochud M, et al. Elevated serum uric acid is associated with high circulating inflammatory cytokines in the population-based Colaus study. PLoS ONE. 2011;6:e19901.

    Article  CAS  Google Scholar 

  36. Quiñones GA, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, et al. Effect of insulin on uric acid excretion in humans. Am J Physiol. 1995;268:E1–5.

    Google Scholar 

  37. Schwartz IF, Grupper A, Chernichovski T, Grupper A, Hillel O, Engel A, et al. Hyperuricemia attenuates aortic nitric oxide generation, through inhibition of arginine transport, in rats. J Vasc Res. 2011;48:252–60.

    Article  CAS  Google Scholar 

  38. Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, et al. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2008;295:C1183–1190.

    Article  CAS  Google Scholar 

  39. Roncal-Jimenez CA, Lanaspa MA, Rivard CJ, Nakagawa T, Sanchez-Lozada LG, Jalal D, et al. Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metabolism. 2011;60:1259–70.

    Article  CAS  Google Scholar 

  40. Duffy WB, Senekjian HO, Knight TF, Weinman EJ. Management of asymptomatic hyperuricemia. JAMA. 1981;246:2215–6.

    Article  CAS  Google Scholar 

  41. Miller TQ. Statistical methods for describing temporal order in longitudinal research. J Clin Epidemiol. 1997;50:1155–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the participants of HDNNCDS and MPHS for their continued cooperation and participation. This work was supported by funds from the National Natural Science Foundation of China (81472981), the Wu Liande Grant of Harbin Medical University (WLD-QN1406) and by the Postdoctoral Science Foundation of China (2013T60393).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Na, Ying Li or Changhao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Meng, X., Shan, R. et al. Temporal relationship between hyperuricemia and obesity, and its association with future risk of type 2 diabetes. Int J Obes 42, 1336–1344 (2018). https://doi.org/10.1038/s41366-018-0074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0074-5

This article is cited by

Search

Quick links