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Recent insights of T cell receptor-mediated
signaling pathways for T cell activation and
development
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Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes.
The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8
coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and
second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined
by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells
toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and
proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we
summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the
roles of effector molecules that are involved in these pathways.

Introduction
As antigens enter the body, they are processed and

presented by major histocompatibility complex (MHC)
molecules expressed on the surface of antigen-presenting
cells and recognized by T cell receptors (TCRs) on the
surface of T cells. TCR signaling, in cooperation with
signaling pathways induced by cytokines, costimulatory
molecules, chemokines, integrins, and metabolites, drives
the differentiation of activated T cells into specific T cell
subtypes1. This results in the generation of various types
of T cells with different specialized functions. Effector
T cells fight against pathogens at initial exposure, and
memory T cells provide defense against future infection.
CD4+ T cells can differentiate into specialized effector
subtypes, including T helper type 1 (Th1), Th2, Th17,
follicular helper T, and regulatory T (Treg) cells. These
subtypes regulate the immune response to address diverse
types of pathogens. By generating specific T cell subtypes,
the immune system can fine-tune itself and protect

against inappropriate activation. It must achieve a delicate
balance of sufficient activation to control infectious agents
while preventing autoimmunity. Thus precise regulation
of the T cell activation process is crucial for overall
immune homeostasis2. Recent data suggest that TCR
signaling is crucial for T cell differentiation and memory.
How the fate of T cell differentiation is regulated has been
widely investigated3. T cells are part of the adaptive
immune system and fight against various infections and
cancers. However, abnormal T cell function can cause
autoimmune and inflammatory diseases. Naive T cells are
initially activated through their TCRs by antigen/MHC
complexes expressed by antigen-presenting cells. Sub-
sequent signals, including environmental cues and sig-
naling through CD28 or other costimulatory receptors,
are required for T cell activation. Various signaling
pathways, including the Ras-extracellular signal-related
kinase (ERK)-activator protein (AP)-1 pathway, the ino-
sitol triphosphate (IP3)-Ca

2+-nuclear factor of activated
T cells (NFAT) pathway, the protein kinase C (PKC)θ-IĸB
kinase (IKK)-nuclear factor (NF)-κB pathway, and the
tuberous sclerosis complex (TSC)1/2-mammalian target
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of rapamycin (mTOR) pathway, are involved in TCR
signaling (Fig. 1). Furthermore, several membrane pro-
teins, such as lymphocyte function-associated antigen 1
and linker for activation of T cells, regulate T cell acti-
vation and function. For example, lymphocyte function-
associated antigen 1 mediates TCR-induced T cell
migration and activation by recruiting actinin and talin for
the polymerization of filamentous actin4,5.
Wiskott–Aldrich syndrome protein and cell division
control protein 42 are also involved in actin filament
polymerization, the activity of which can be regulated by a
protein complex composed of VAV1, noncatalytic region
of tyrosine kinase adaptor protein, and adhesion and
degranulation-promoting adapter protein, which associ-
ates with linker for activation of T cells-Src homology
(SH)2 domain-containing leukocyte protein 766. How-
ever, hematopoietic progenitor kinase 1 inhibits this
complex by phosphorylating SH2 domain-containing
leukocyte protein 767. Genetic/epigenetic controls also
regulate T cell functions and activity8–11.

Overview of TCR signaling and T cell development
The TCR complex
The structural components of the TCR complex were

revealed in the 1980s through intense investigation and
advances in molecular biology and biochemistry techni-
ques12. The TCR complex consists of TCRα/β chains and
CD3γ/δ/ε/ζ subunits, which associate through hydro-
phobic interactions13–15. Somatic VDJ recombination
enables the generation of distinct TCRα and TCRβ beta
chains, and TCRα/β heterodimers are responsible for
antigen recognition by binding to peptide–MHC com-
plexes16,17. CD3 transmits the TCR-triggered signal
through immunoreceptor tyrosine-based activation motifs
(ITAMs) in its cytoplasmic tail, but it is not directly
involved in antigen recognition18,19. ITAMs are tandem
duplications of a tyrosine-containing sequence (YXXL/I),
and the CD3γ/δ/ε chains each contain one ITAM, while
the CD3ζ chain contains three20,21. As a consequence of
TCR engagement, ITAM phosphorylation is induced by
protein tyrosine kinases (PTKs), which allow other
effector molecules to interact with the TCR complex21.

Protein tyrosine kinases
The importance of tyrosine phosphorylation in TCR

signaling was revealed by studies using PTK inhibi-
tors22,23. TCR engagement triggers the activation and
recruitment of PTKs, including Src family PTKs such as
Lck and Fyn and the Syk family PTK zeta chain of TCR-
associated protein 70 (ZAP-70)24. Evidence from Lck- or
Fyn-null mice shows that Lck is crucial for T cell devel-
opment, while Fyn is not essential for T cell development,
as other Src family kinases can compensate for Fyn25–27.
Lck is regulated by C-terminal Src kinase-mediated

phosphorylation at its Y505 residue, which switches Lck
to an inactive state28. The CD45 tyrosine phosphatase
dephosphorylates inhibitory phosphorylation at Y505 and
dephosphorylates positive regulatory autophosphorylation
at Y394, although less efficiently29–31. This tight regula-
tion of Lck activity protects against hyperactivation of
T cells and autoimmunity, thus maintaining T cell
homeostasis29,31. Activated Lck or Fyn phosphorylates the
tyrosine residues of the ITAMs in the CD3 subunits.
Tyrosine phosphorylation of CD3ζ provides the binding
site for ZAP-70 via its SH2 domain, and then Lck or Fyn
activates ZAP-70 by phosphorylation24,32. Therefore,
recruitment of ZAP-70 to the activated TCR complex
results in the formation of a signaling complex at the
plasma membrane by recruiting other proteins through
phosphorylation or activation24.

T cell development
T cells develop from thymus-migrant hematopoietic

lineage cells, particularly common lymphoid progenitors
or lymphoid-primed multipotent progenitors derived
from the bone marrow or the fetal liver33,34. Developing
T cells in the thymus progress through four double-
negative (DN1–4) stages, then a double-positive (DP)
stage, and finally mature into single-positive (SP) naive
T cells35. DN1–4 cells are distinguished by their expres-
sion of CD44 and CD25: DN1, CD44+CD25−; DN2,
CD44+CD25+; DN3, CD44−CD25+; and DN4,
CD44−CD25−36. At the DN3 stage, a pre-TCR complex
that consists of a pre-TCRα chain and a mature β chain
first appears. The mature β chain in this complex is a
product of somatic DNA rearrangement by recombina-
tion activating gene 1/237–40. T cells with a functional pre-
TCR are positively selected by β selection, and they
undergo massive proliferation and begin to rearrange the
Tcra gene35,41. At the DP stage, both the CD4 and CD8
coreceptors are expressed (CD4+CD8+), and the αβ TCR
is formed by replacing the pre-TCRα chain with the TCRα
chain42. DP T cells encounter other checkpoints: DP
T cells expressing αβ TCRs that recognize their MHC
molecules through Tcra rearrangement are positively
selected, and self-reactive T cells are deleted through
negative selection43,44. In addition, DP T cells with dys-
functional TCRs that cannot receive or transduce TCR-
mediated signals undergo apoptosis, while the selected
cells further develop into CD4 or CD8 SP cells45.

The strength of TCR signaling and T cell differentiation
TCR stimulation is a fundamental step in most T cell

responses. When TCRs are stimulated, the quality or
quantity of the resulting signaling is affected by various
factors, such as the strength and length of stimulation.
Interestingly, differences in the affinities of stimulatory
agonists for the TCR are sufficient to cause differences in
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Fig. 1 (See legend on next page.)
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T cell physiology. When naive CD4+ T cells are subjected
to strong TCR stimulation, Th1 cell differentiation is
favored over Th2 cell differentiation, both in vitro and
in vivo46,47. Conversely, weak TCR signals favor Th2 cell
differentiation46,47. Whether differences in TCR signaling
strength affect Th17 cell differentiation remains con-
troversial48,49. Importantly, the strength of TCR signaling
also regulates Treg cell differentiation. Although thymus-
derived Treg cells are induced by a broad range of antigen
affinities, high TCR signaling strength preferentially
induces thymus-derived Treg cell differentiation50,51. In
addition, for peripherally derived Treg cells, a low level of
a strong agonism is important for their stable induction52.
A longer TCR–pMHC dwell time, as well as a high-
affinity TCR, is positively related to follicular helper T cell
differentiation53,54. Furthermore, weak TCR stimulation
suffices for the generation or enhancement of memory
CD8+ T cell function, while a longer TCR–pMHC
interaction, high levels of an antigen, or a high affinity
antigen are associated with robust proliferation1,55,56.

Regulatory mechanisms in TCR signaling
Positive TCR signaling pathways
The Ras-ERK1/2-AP-1 pathway
Ras proteins make up a family of small GTPases

expressed in animal cells that includes H-Ras, N-Ras, K-
Ras4A, and K-Ras4B57. These isoforms have conserved
effector binding domains but different carboxy-terminal
regions, which enables them to selectively associate with
various cell membranes, resulting in their intracellular
compartmentalization57. Ras functions as a binary signal
switch: as Ras is switched on, it transmits signals to other
proteins, turning on genes involved in cell growth, dif-
ferentiation, and survival58. If Ras is permanently acti-
vated by mutation, it can signal constitutively in the
absence of activating signals, resulting in cell transfor-
mation59. All Ras isoforms are expressed in lymphocytes
and are involved in TCR signaling and T cell development
and function60.

The ERK1/2 pathway is a downstream signaling path-
way of Ras, and it can be activated by persistent Ras sig-
naling61. ERK1/2 is regulated by a feedback mechanism
targeting ERK1/2 itself or its upstream activators. ERK1/2
inactivation is controlled by mitogen-activated protein
(MAP) kinase phosphatases, which have dual specificity
for Ser/Thr and Tyr residues. ERK1/2 signaling has an
important role in controlling T cell development, differ-
entiation, and TCR-induced signal strength62,63.
AP-1 is a basic leucine zipper transcription factor

composed of homodimers or heterodimers of Jun, Fos,
and activating transcription factor (ATF). AP-1 activity is
regulated by extracellular signals that repress or activate
AP-1 transcription64,65. For example, the basic leucine
zipper ATF-like transcription factor, which belongs to the
AP-1 family, can regulate osteoarthritic cartilage
destruction by controlling anabolic and catabolic gene
expression in chondrocytes66. Basic leucine zipper ATF-
like transcription factor/Jun heterodimers can bind to AP-
1-binding sites and regulate gene expression. The AP-1
family is also involved in Th17 differentiation67,68.
As upstream signals including TCR, Lck/Fyn, ZAP-70,

and growth factor receptor-bound protein 2/son of
sevenless are transmitted to Ras, GDP on Ras is exchan-
ged for GTP by son of sevenless69,70. Ras is activated by
GTP exchange, resulting in the sequential activation of
the kinases Raf, MAP kinase/ERK kinase 1/2, and ERK1/2,
resulting in the transcription of c-Fos and JunB. This
results in the formation of the AP-1 complex, which
induces interleukin (IL)-2 transcription71,72. The c-Jun
transcription factor can be activated through the Rac/cell
division control protein 42-MAP kinase kinase 4/7-c-Jun
N-terminal kinase pathway and related proteins73–75. In
addition, p38 MAP kinase can also regulate the activity of
ATF75,76.

The IP3-Ca
2+-NFAT pathway

IP3 is formed when phosphatidylinositol 4,5-bispho-
sphate is hydrolyzed by phospholipase C. IP3 functions as

(see figure on previous page)
Fig. 1 Overview of T cell receptor signaling cascades. ADAP adhesion and degranulation-promoting adapter protein, BCL B cell lymphoma, Cbl
casitas B-lineage lymphoma, CaM calmodulin, CaMKIV calcium/calmodulin-dependent protein kinase type IV, CARMA1 caspase recruitment domain-
containing membrane-associated guanylate kinase protein 1, Cdc42 cell division control protein 42, CRAC calcium release-activated calcium, CRBN
cereblon, CREB cAMP response element-binding protein, CTLA-4 cytotoxic T lymphocyte-associated protein-4, DAG diacylglycerol, DEPTOR DEP
domain-containing mTOR-interacting protein, Dlgh1 discs large homolog 1, ERK extracellular signal-related kinase, F-actin filamentous actin,
GADD45α growth arrest and DNA damage inducible alpha, GβL G protein beta subunit-like, GRB2 growth factor receptor-bound protein 2, HPK1
hematopoietic progenitor kinase 1, IKK IκB kinase, IP3 inositol triphosphate, IP3R IP3 receptor, JNK c-Jun N-terminal kinase, LAT linker for activation of
T cells, Lck lymphocyte-specific protein tyrosine kinase, LFA-1 lymphocyte function-associated antigen-1, MALT1 mucosa-associated lymphoid tissue
lymphoma translocation protein 1, MAPK mitogen-activated protein kinase, MEK MAPK/ERK kinase, MEKK MAP kinase kinase kinase, MKK MAP kinase
kinase, mTOR mammalian target of rapamycin, NCK noncatalytic region of tyrosine kinase adaptor protein 1, NF-κB nuclear factor-κB, NFAT nuclear
factor of activated T cells, PDK1 phosphoinositide-dependent kinase 1, PI3K phosphoinositide 3-kinase, PIP2 phosphatidylinositol 4,5-bisphosphate,
PKCθ protein kinase C theta, PLCγ1 phospholipase C gamma 1, Raptor regulatory-associated protein of mTOR, RasGRP Ras guanyl-releasing protein 1,
SLP76 Src homology 2 domain containing leukocyte protein 76, SOS son of sevenless, TCR T cell receptor, WASP Wiskott–Aldrich syndrome protein,
ZAP-70 zeta chain of TCR-associated protein 70, ZIP Zrt- and Irt-like protein.
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a second messenger. When IP3 binds to its receptor on
the membrane of the endoplasmic reticulum, Ca2+ is
released from the endoplasmic reticulum into the cytosol,
resulting in the activation of various signaling pathways77.
The calcium release-activated calcium channel controls
the intracellular Ca2+ concentration in lymphocytes78.
Ca2+ is a universal second messenger in T cells. T cell
proliferation, differentiation, and effector functions are
regulated by Ca2+79. There are two types of Ca2+ signal-
ing pathways in T cells, long term and short term. NFAT
is a transcription factor that is activated by Ca2+ influx in
T cells and involved in long-term Ca2+ signaling80. It
induces gene expression alone or in cooperation with
other transcription factors80. When antigen/MHC com-
plexes bind to TCRs, PTKs are activated, resulting in the
phosphorylation and activation of phospholipase C-γ1.
The membrane phospholipid phosphatidylinositol 4,5-
bisphosphate is hydrolyzed, generating IP3 and dia-
cylglycerol (DAG)81. Ca2+ efflux is sensed by stromal
interaction molecules 1 and 2. Stromal interaction mole-
cule proteins form clusters known as puncta, which
trigger Ca2+ influx via calcium release-activated calcium
channels82,83. Ca2+ influx activates the NFAT pathway via
Ca2+-related proteins84. An increase in Ca2+ can also
facilitate the formation of actin filaments85. A recent study
demonstrated that deletion of Crbn, the gene encoding
cereblon, in CD4+ T cells increases Kv1.3 channel
expression and consequent Ca2+ flux, resulting in stron-
ger NFAT activation after TCR stimulation9, implying
that CRBN regulates TCR-induced NFAT activation. In
addition, a previous study showed that zinc can regulate
TCR signaling pathways and cytokine production by
activated T cells86.

The PKCθ-IKK-NF-κB pathway
After T cell activation, the serine/threonine-specific

PKCθ is recruited to the immunological synapse87. Then a
signaling complex composed of caspase recruitment
domain-containing membrane-associated guanylate
kinase protein 1 (CARMA1), B cell lymphoma/leukemia
10 (BCL10), and mucosa-associated lymphoid tissue
translocation protein 1 (MALT1) is formed in the cyto-
plasm88. PKCθ was the first PKC family member to be
found to be recruited to the immunological synapse. It
plays an integral role in activating a range of signaling
cascades, leading to transcriptional regulation in
T cells88–95.
Phosphoinositide-dependent kinase 1 (PDK1) is an

enzyme that is involved in various signaling pathways. It
plays a crucial role in T/B cell development and survival,
intestinal homeostasis, and immune tolerance96–99. NF-
κB is a well-known target of PDK1. PDK1 is required for
TCR-mediated activation of NF-κB and PKCθ; selective
deletion of PDK1 in T cells abrogates activation of NF-κB

and PKCθ98. Recently, it was shown that PKCθ induces
phosphorylation of PDK1100, resulting in T cell activation
and TCR-induced NF-κB activation96–98,100–102. PKCθ is
involved in the activation of NF-κB103. When T cells are
in the resting state, NF-κB exists in the cytoplasm bound
to IκB. When TCR/CD28 ligation occurs, NF-κB signaling
is activated. PDK1 efficiently activates PKCθ via the
phosphoinositide 3-kinase pathway104. Activated PKC
phosphorylates a serine residue located in the membrane-
associated guanylate kinase domain of CARMA1105. Then
BCL10 and MALT1 are recruited, resulting in the for-
mation of the active CARMA1-BCL10-MALT1 signaling
complex106. This promotes IKK complex activation and
IκB degradation, which allows NF-κB to translocate to the
nucleus, initiating the transcription of genes that are
required for T cell activation11,103,107–110.
CARMA1, also called CARD11, is a scaffold protein that

is considered a hallmark of IKK/NF-κB activation.
CARMA1 contains several domains, including a caspase
recruitment domain and coiled-coil, SH3, guanylate
kinase, and PDZ domains106. Except for the PDZ domain,
each of these domains is required for CARMA1 to activate
NF-κB. CARMA1 is constitutively associated with the
plasma membrane and recruited into lipid rafts after TCR
stimulation111. CARMA1 activation is mediated by several
mechanisms106, including phosphorylation. PKC phos-
phorylates CARMA1 between its coiled coil and PDZ
domains after it is activated by TCR/CD28 ligation.
Phosphorylated CARMA1 undergoes a conformational
change, enabling it to associate with BCL10 and MALT13.

TSC1/2-mTOR signaling
TSC1 and TSC2 are tumor suppressors. They hetero-

dimerize and regulate downstream signaling112. mTOR is
involved in T cell activation, differentiation, and func-
tion113. Rapamycin is an immunosuppressant that pro-
motes G1 arrest and inhibits downregulation of the
cyclin-dependent kinase inhibitor p27113. Treatment of
T cells with rapamycin inhibits their proliferation and
leads to anergy. The ability of rapamycin to promote Treg
cell generation underlies its ability to induce T cell
anergy114. mTOR is activated by various signals, including
growth factors, nutrients, and cellular stress signals, and
regulates the growth, proliferation, and survival of
cells113,115. Two different mTOR complexes, mTORC1
and mTORC2, are involved in mTOR signaling113.
mTORC1 and mTORC2 both include the scaffolding
proteins Raptor and Rictor. Activation of mTORC1
results in phosphorylation of S6 kinase 1 and translation
of 4E-BP1, while activation of mTORC2 results in phos-
phorylation of the kinase AKT116. Recently, a relationship
between TSC1/2 and mTOR was reported. When TSC2 is
phosphorylated by AKT, the GAP activity of the TSC1/2
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complex is inhibited, resulting in the activation of the
small GTPase Rheb and mTORC1 activation113.

Inhibitory TCR signaling pathways
Phosphatases
Phosphorylation and dephosphorylation of TCR sig-

naling molecules affect signaling complex formation and
propagation of TCR signals. Similar to CD45 phosphatase,
SH2 domain-containing protein tyrosine phosphatase
(SHP-1) dephosphorylates Lck at Y394, resulting in its
inactivation117. TCR signaling-mediated Lck activation
results in SHP-1 activation via activated Lck phosphor-
ylation of Y564 in SHP-1, which in turn dephosphorylates
and inactivates Lck118, resulting in the attenuation of both
early and late TCR signaling events. TCR signaling
induces the expression of an adhesion molecule, carci-
noembryonic antigen-related cell adhesion molecule 1, at
a later time point119. The phosphorylation of an immu-
noreceptor tyrosine-based inhibitory motif in carci-
noembryonic antigen-related cell adhesion molecule 1
recruits SHP-1, which dephosphorylates Lck, resulting in
the termination of TCR signaling120. By contrast, under
strong TCR–ligand binding conditions, ERK1/2 phos-
phorylate Lck at S59, preventing the recruitment of SHP-
1 and sustaining TCR signaling for gene expression121.
Suppressors of TCR signaling-1 and -2, which are TCR
signaling-related phosphatases, dephosphorylate Syk and
ZAP-70, respectively122,123. Mice lacking both suppressors
of TCR signaling-1 and -2 show T cell hyperproliferation,
enhanced activation of TCR signaling, and increased
susceptibility to autoimmunity123. Furthermore, PTEN
dephosphorylates PIP3, and dual specificity phosphatases
dephosphorylate ERK2124,125. These observations suggest
that dephosphorylation events in TCR signaling are
important for the termination or negative regulation of
TCR signaling cascades.

Ubiquitination and degradation
There is increasing interest in understanding the role of

proteolytic mechanisms in the regulation of TCR signal
transduction. Proteolysis is primarily caused by protea-
somal or lysosomal processes. Many short-lived proteins
selectively undergo ubiquitination before their proteaso-
mal degradation. Ubiquitination results from the con-
jugation of ubiquitin to proteins through a series of
enzymatic reactions126. Ubiquitination is initiated when
the E1 ubiquitin-activating enzyme releases ubiquitin
from the inactive state. Active ubiquitin is then trans-
ferred to an E2 ubiquitin-conjugating enzyme. Finally, the
E3 ubiquitin ligase transfers activated ubiquitin from the
E2 enzyme to the target protein. Thus the E3 ligase
facilitates the actual attachment of ubiquitin to the sub-
strate and therefore controls the specificity of substrate
targeting127. Although many types of E3 ligases have been

reported, the mechanisms determining their substrate
specificity are not clearly understood128.
Ubiquitination is an important process in the regulation

of T cell development, activation, and immune tolerance.
Therefore, failure to regulate ubiquitination appropriately
can lead to autoimmune and inflammatory diseases129.
Several E3 ligases, such as casitas B-lineage lymphoma
(Cbl), Itch, Deltex, and gene related to anergy in lym-
phocytes, are known to be involved in the regulation of
TCR signaling via ubiquitination-mediated degradation of
TCR signaling molecules, including CD3ζ, PKCθ, ZAP-70,
phospholipase C-γ1, and phosphoinositide 3-kinase130–133.
Itch ubiquitinates Jun, thereby reducing AP-1 activity134,
while Cbl ubiquitinates CD3ζ via an adapter molecule,
ZAP-70135. In contrast, Cbl-b and Itch inhibit the asso-
ciation between ZAP-70 and CD3ζ by conjugating K33-
linked ubiquitin chains to CD3ζ, which does not lead to its
degradation136. T cell anergy is also regulated by E3
ligases, including Cbl-b, c-Cbl, gene related to anergy in
lymphocytes, and Itch137. The expression of gene related
to anergy in lymphocytes is induced under anergic T cell
conditions with decreased IL-2 production71. Roquin1/2
E3 ligases maintain immune tolerance by regulating T cell
activation and differentiation appropriately138,139. Fur-
thermore, ubiquitination plays a role in TCR-induced T
cell activation. IκB ubiquitination and subsequent degra-
dation of NF-κB are well-known processes140,141. How-
ever, before these can occur, NF-κB essential modulator
(also known as IKKγ) must be ubiquitinated by the
TRAF6 E3 ubiquitin ligase (K63-linked polyubiquitina-
tion), which contributes to the activation of the IKK
complex142–144.

DAG kinases
DAG is an important signaling molecule involved in

several signaling cascades. DAG kinases (DGKs) are lipid
kinases that convert DAG to phosphatidic acid by phos-
phorylation, thereby regulating the subcellular DAG
level145. Ten isoforms of mammalian DGKs have been
identified, among which DGKα and DGKζ act as crucial
regulators downstream of the TCR146,147. When DGKζ
expression increases in T cells, TCR-induced Ras-ERK
signaling is reduced148. In addition, T cells exhibiting loss
of DGKα and/or DGKζ show increased TCR-induced
signaling, including Ras-MAP kinase/ERK kinase-ERK-
AP-1, PKCθ-NF-κB, and mTOR pathway signaling, lead-
ing to hyperactivation, impaired induction of anergy, and
reduced antiviral responses in CD8+ T cells149–154.
DGKα/DGKζ double-knockout mice show impaired T
cell development, and phosphatidic acid treatment par-
tially rescues T cell development, suggesting that DGKs
not only terminate DAG signaling but also initiate phos-
phatidic acid-mediated signaling155.

Hwang et al. Experimental & Molecular Medicine (2020) 52:750–761 755

Official journal of the Korean Society for Biochemistry and Molecular Biology



T cell development pathways
Transcriptional control of T cell development
Ikaros
Members of the Ikaros transcription factor family,

including Helios and Aiolos, possess zinc-finger
motifs156–158. They are most abundant in hematopoietic
lineages and are mainly lymphocyte restricted156,159. Mice
with a homozygous mutation in the DNA-binding domain
of Ikaros lack T, B, and natural killer cells, as well as their
earliest progenitors160. In another study, functionally
Ikaros-null mutant mice were generated by deleting the
C-terminal region to avoid a dominant-negative effect due
to the loss of the DNA-binding domain161. These mice
show an absence or large reduction in fetal T and B cells
and in adult γδ T, B, natural killer, and thymic antigen-
presenting cells and show aberrant proliferation and dif-
ferentiation into CD4 lineage T cells postnatally161. These
studies suggest that Ikaros promotes the differentiation of
hematopoietic stem cells into lymphocytes and establishes
early branch points in postnatal T cell development160,161

(Fig. 2). In addition, Ikaros regulates checkpoints in T cell
development, such as β selection and the transition from
the DP to the SP stage162.

GATA-3
GATA transcription factor family proteins contain zinc-

finger motifs that recognize the consensus DNA sequence

WGATAR (W represents A or T, and R represents A or
G)163,164. GATA-3 was first identified as a regulator of the
Tcra gene that binds to a Tα3 element in the Tcra
enhancer165, but it also has a well-known role in Th2 cell
differentiation166,167. In lymphoid lineage cells, GATA-3
expression is restricted to early hematopoietic precursors,
immature/mature T cells, and natural killer cells165,168,169.
One group assessed the role of GATA-3 in immune cell
development using a Rag2−/− blastocyst complementa-
tion system because homozygous deletion of Gata3 is
embryonic lethal and showed that GATA-3 is crucial for
T cell development170. Another study using mice with a
conditional deletion in Gata3 in early- or late-stage thy-
mocytes showed arrest of the DN3 population with
decreased DN4, DP, and SP populations or impaired
differentiation into CD4+ T cells, respectively.171. These
results imply that GATA-3 affects β selection and com-
mitment to the CD4 SP lineage171 (Fig. 2). In the choice
between the CD4 or CD8 lineage, GATA-3 can directly
induce expression of the Zbtb7b gene, which encodes the
transcription factor ThPOK172. ThPOK independently
inhibits the differentiation of DP thymocytes into CD8 SP
cells and promotes differentiation into CD4 SP cells in a
GATA-3-dependent manner, suggesting that GATA-3 is
an upstream regulator of ThPOK172. On the other hand,
the exact role of GATA-3 in β selection is not
completely known.

Fig. 2 Transcriptional controls of T cell development. CLP common lymphoid progenitor, DN double negative, DP double positive.
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Notch
Notch was first identified as a regulator of cell fate

decisions during neuronal and epidermal cell differentia-
tion in Drosophila173. In mammals, it is a transmembrane
receptor of the Delta/Serrate/Lag-2 family that interacts
with membrane-associated ligands, Jagged 1/Serrate 1,
Jagged 2/Serrate 2, Delta 1, Delta 2, and Delta 3174.
Interaction between cells expressing Notch and cells
expressing Delta/Serrate/Lag-2 ligands causes proteolytic
cleavage of Notch, which migrates to the nucleus and
releases intracellular domains that interact with recom-
bination signal-binding protein for immunoglobulin
kappa J region, leading to gene regulation175,176. Targets
of activated recombination signal-binding protein for
immunoglobulin kappa J region are incompletely char-
acterized. One known target is hairy and enhancer of split
1, which is upregulated by Notch and acts as a tran-
scriptional repressor.
Further evidence for the role of Notch in T cell lineage

determination comes from experiments in which mice
were reconstituted with bone marrow stem cells expres-
sing constitutively active Notch1. The differentiation of
stem cells into B cells was completely blocked in these
mice, which developed a thymus-dependent population of
T cells in the bone marrow177. In contrast, deletion of
Notch1 or inhibition of Notch1 signaling in hematopoietic
stem cells drives B cell development, while T cell devel-
opment is blocked178–180. Thus lymphocyte progenitor
cells develop into T cells via Notch signaling, but without
these signals, the B cell fate is chosen (Fig. 2).

Conclusions
The signals initiated by the activated TCR complex play

essential roles in T cell-mediated immune responses. In
recent decades, extensive efforts by researchers and
advances in molecular, genetic, and biochemical techni-
ques have made it possible to elucidate the structure and
signaling molecules of the TCR complex. Engagement of
the TCR complex is a prerequisite for the initiation of the
TCR signaling cascades that were summarized in this
review. TCR signaling is important for many aspects of T
cell regulation, including development, differentiation,
activation, proliferation, and survival. Therefore, TCR
signaling must be tightly regulated. In this regard, ther-
apeutics have been developed that target the TCR com-
plex, mainly for immune suppression. For example,
muromonab-CD3 (orthoclone OKT3) is the first mouse
anti-human CD3 monoclonal antibody to be used in the
clinic. It binds to CD3ε in circulating T cells and elicits
immune suppression by inducing apoptosis. In an attempt
to reduce its side effects related to its mouse origin, chi-
meric or humanized anti-CD3 monoclonal antibodies,
such as otelixizumab, teplizumab, and visilizumab, have

been developed and are under clinical trials for the
treatment of various diseases.
The regulation of TCR signaling is a complicated pro-

cess and is controlled by a large number of effector
molecules, and there are still many aspects of T cell
activation and development that are poorly understood.
The integration of TCR-induced signaling and CD28-
induced signaling is relatively well understood, but the
effect of imbalances between these two signaling cascades
on T cell differentiation and function is not well under-
stood. For example, strong CD28 signaling blocks Th17
differentiation. Thus there are unknown regulatory
mechanisms controlling T cell-mediated immune
responses. A more comprehensive understanding of these
processes will enable us to therapeutically modulate
immune responses for the treatment of autoimmune
disease and other immune-related diseases.
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