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Olfactory marker protein regulates
prolactin secretion and production by
modulating Ca2+ and TRH signaling in
lactotrophs
Chan Woo Kang1,2, Ye Eon Han1,2, Mi Kyung Lee3, Yoon Hee Cho2, NaNa Kang4, JaeHyung Koo4, Cheol Ryong Ku2 and
Eun Jig Lee1,2

Abstract
Olfactory marker protein (OMP) is a marker of olfactory receptor-mediated chemoreception, even outside the olfactory
system. Here, we report that OMP expression in the pituitary gland plays a role in basal and thyrotropin-releasing
hormone (TRH)-induced prolactin (PRL) production and secretion. We found that OMP was expressed in human and
rodent pituitary glands, especially in PRL-secreting lactotrophs. OMP knockdown in GH4 rat pituitary cells increased
PRL production and secretion via extracellular signal-regulated kinase (ERK)1/2 signaling. Real-time PCR analysis and
the Ca2+ influx assay revealed that OMP was critical for TRH-induced PRL secretion. OMP-knockout mice showed lower
fertility than control mice, which was associated with increased basal PRL production via activation of ERK1/2 signaling
and reduced TRH-induced PRL secretion. However, both in vitro and in vivo results indicated that OMP was only
required for hormone production and secretion because ERK1/2 activation failed to stimulate cell proliferation.
Additionally, patients with prolactinoma lacked OMP expression in tumor tissues with hyperactivated ERK1/2 signaling.
These findings indicate that OMP plays a role in PRL production and secretion in lactotrophs through the modulation
of Ca2+ and TRH signaling.

Introduction
Prolactin (PRL) is a hormone that is mainly secreted by

lactotrophs of the anterior pituitary gland and is involved
in many biological processes, including reproduction and
lactation1. The dysregulation of PRL signaling contributes
to tumorigenesis—including PRL-secreting adenomas or
prolactinomas—leading to pathological hyperprolactine-
mia. In addition, PRL hypersecretion causes hypogonad-
ism and infertility2.

PRL secretion is controlled by multiple factors. Dopa-
mine, secreted by hypothalamic neurons, is the major
inhibitor of pituitary PRL secretion3, which is induced by
thyrotropin-releasing hormone (TRH) and estrogen (E2).
TRH is secreted by the hypothalamus and transported to
the pituitary gland via circulation to stimulate PRL
synthesis and secretion, although the underlying
mechanisms are not fully understood4.
Olfactory marker protein (OMP) is a small, cytoplasmic

protein that is abundantly and almost exclusively expressed
in vertebrate olfactory neurons5–8. Previous studies have
shown that OMP modulates olfactory signal transduction
in part by participating in Ca2+ clearance8–13. Microarray
and RNA sequencing analyses have revealed that OMP is
also expressed in non-olfactory tissues, often with odorant
receptors (ORs), which constitute a major class of G
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protein-coupled receptor (GPCR)14,15. However, it is not
known whether OMP function is conserved across tissues.
Recent studies have suggested a link between OMP and the
endocrine system, especially in neuroendocrine neoplasia
and hormone secretion15–18. However, to date, there have
been no studies investigating the role of OMP in the
functioning of the pituitary gland, which is considered the
master regulator of the neuroendocrine system. To address
this issue, the present study investigated OMP expression
in the mouse and human pituitary gland, and characterized
its mechanism of action in pituitary lactotrophs.

Materials and methods
Plasmid constructs and transfection
Plasmids expressing OMP were purchased from

Addgene (Cambridge, MA, USA). GH4 cells were seeded
at a density of 0.5 × 106 cells/60-mm dish 1 day before
transfection. The cells were transfected with the appro-
priate expression plasmids using the Polyjet transfection
reagent (SignaGen, Rockville, MD, USA), and cultured at
37 °C for 24 h, followed by treatment with TRH or saline
for an additional 30 min prior to lysis.

Cell culture
Rat pituitary cell lines, GH3 and GH4, were purchased

from the American Type Culture Collection (Manassas,
VA, USA) and cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum (FBS;
Hyclone, Logan, UT, USA) and 1% penicillin/streptomy-
cin (Hyclone). Cells were cultured in a humidified tissue
culture incubator at 37 °C in an atmosphere of 5% CO2.

Tissue culture
Pituitary glands were isolated from 20-week old C57BL6

OMP-WT or -KO mice (n= 5). The anterior pituitary
glands were rapidly removed and processed for explant
cultures. All procedures were carried out in a laminar-flow
hood. After aseptically trimming adhering tissue residues,
the pituitary tissue was transferred to a sterile conical tube
and washed with cold HEPES-buffered salt solution (HBSS)
buffer. The tissue explants were individually placed on 40-
mesh Millicell cell culture inserts (Millipore, Billerica, MA,
USA) in 1ml Ham’s F-10 culture medium supplemented
with 10% FBS and antibiotics in plastic culture dishes. The
cultures were maintained for up to 1 week under controlled
conditions (humidified atmosphere, 37 °C, 5% CO2 in air)
and the medium was changed daily.

Quantitative real-time PCR (qRT-PCR) analysis
Total RNA was extracted from GH3 or GH4 cells or

mouse pituitary tissue lysates using Isol-RNA lysis reagent
(5 PRIME, Hilden, Germany), and complementary DNA
was prepared using ReverTra Ace (Toyobo, Osaka, Japan).
The following forward and reverse primers were used for

amplification: glyceraldehyde 3-phosphate dehydrogenase,
5′-GGATGGAATTGTGAGGGAGA-3′ and 5′-GAGGA-
CCAGGTTGTCTCCTG-3′; PRL, 5′-CATCAATGACT-
GCCCCACTTC-3′ and 5′-CCAAACTGAGGATCAGG-
TTCAAA-3′; mouse OMP, 5′-CGTCTACCGCCTCGA-
TTTCA-3′ and 5′-CAGAGGCCTTTAGGTTGGCA-3′;
rat OMP, 5′-GCAGTTCGATCACTGGAACG-3′ and
5′-ATCCATGGCATCGGAGTCTTC-3′; and TRHR1,
5′-CATGTTCAATAACGGCCTTTACC-3′ and 5′-GGG-
CTGGAGAGAAATGAGTTGACA-3′.

Western blot assay
Whole cell protein lysates were prepared, and the

western blot assay was performed according to standard
procedures. Briefly, cells were chilled on ice, washed twice
with ice-cold phosphate-buffered saline, and lysed in
buffer containing 1mM phenylmethylsulfonyl fluoride
and 1× protease inhibitors (Sigma-Aldrich). Protein con-
centrations were determined with the Bradford assay kit
(Bio-Rad, Hercules, CA, USA). Equal amounts of protein
in cell lysates were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis and transferred to a
membrane that was incubated with the primary antibody,
overnight at 4 °C; the primary antibodies used were rabbit
anti-phospho-ERK1/2 (T202/Y204), mouse anti-ERK1/2,
and rabbit anti-phospho-PKCα/β (T638/641) (Cell Sig-
naling Tec, MA, USA). Rabbit anti-OMP, goat anti-PRL,
and mouse anti-β-actin antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Blots were washed three times with TBST (Tris-buf-

fered saline containing 0.05% Tween 20), and then incu-
bated with horseradish peroxidase (HRP)-conjugated
secondary antibody for 1 h at 25 °C. Secondary antibodies
were donkey anti-rabbit IgG-HRP antibody (1:5000; Santa
Cruz), donkey anti-mouse IgG-HRP antibody (1:5000;
Santa Cruz), or donkey anti-goat IgG-HRP antibody
(1:5000; Santa Cruz). Immunoreactivity was detected with
the SuperSignal West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific, MA, USA). The intensity of
protein bands was quantified using ImageJ and normal-
ized to that of β-actin in each sample.

Immunofluorescence analysis
Paraffin-embedded rat pituitary samples were cut into 4

μm sections that were deparaffinized in xylene and
rehydrated in a graded series of ethanol. Antigen retrieval
was carried out in 10mM sodium citrate buffer (pH 6.0).
Sections were blocked in 5% normal serum for 1 h.
Incubation with specific antibodies for rabbit anti-OMP
(1:100, Santa Cruz, CA, USA), goat anti-GH (1:200), goat
anti-PRL (1:200, Santa Cruz, CA, USA), mouse anti-
ACTH (1:200, Santa Cruz, CA, USA), mouse anti-TSH
(1:200, Santa Cruz, CA, USA), and mouse anti-FSH
(1:200, Santa Cruz, CA, USA) was performed overnight at
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4 °C. After washing with TBST, secondary antibodies,
donkey anti-rabbit-FITC, donkey anti-goat Cy3, or don-
key anti-mouse Cy3 (1:200; Jackson ImmunoResearch,
West Grove, PA, USA), were added, and the sections were
incubated for 2 h at room temperature. After washing, the
sections were mounted with Vectashield medium (Vector
Laboratories, Burlingame, CA, USA). Samples were
visualized with an Axioskop microscope (Carl Zeiss).
For quantification of colocalization of cells expressing

the Cy3-OMP and FITC-hormone, ImageJ software was
used to calculate Pearson’s coefficient, based on the cor-
relation between Red and Green signal overlap in at least
three different normal human pituitary sections.

SiRNA transfection
Short interfering RNA (siRNA) targeting OMP (siOMP-

GCA GUU CGA UCA CUG GAA CGU GGU U) was
synthesized by Invitrogen, and transfected into cells using
Lipofectamine RNAiMAX (Invitrogen).

Cell-cycle analysis
For the cell-cycle assay, 4.0 × 105 cells were fixed with

ice-cold 70% ethanol for 1 h on ice. The cells were then
centrifuged at 800 rpm for 5 min, followed by resuspen-
sion in 1ml of PI Master Mix containing 40 μL of pro-
pidium iodide (Invitrogen), 10 μL of RNase A (Sigma-
Aldrich), and 950 μL of PBS. After incubation at 37 °C for
30min, DNA ploidy was analyzed by flow cytometry.

Cell proliferation assay
MTS assays were performed using the CellTiter 96

Aqueous One Solution Cell Proliferation Assay kit (Pro-
mega). To measure cell proliferation, siCON- or siOMP-
treated cells were seeded into 96-well plates (3000 cells/
well). Then, cell proliferation was measured every 24 h for
5 days. Briefly, 20 μL of MTS labeling reagent was added
to each well and incubated at 37 °C for 1 h. Absorbance
was measured at 490 nm. The relative proliferation of
siOMP-treated cells was normalized to that of siCON-
treated cells after background subtraction.

Animals
Male OMP−/− transgenic mice were obtained from the

Jackson Laboratory (B6;129P2-Omptm3Mom/MomJ).
Wild-type (WT) littermates served as controls. Mice were
maintained under controlled conditions (12:12-h light/
dark cycle, 21 °C) with free access to laboratory chow and
tap water. All animal experiments were performed
according to the applicable Korean laws, reviewed and
approved by the Institutional Animal Care and Use
Committee (IACUC) of the Yonsei University Severance
Hospital, Seoul, Korea (IACUC Approval No: 2015-0025),
and carried out in accordance with the approved guide-
lines by the IACUC.

Mice were genotyped by PCR using genomic DNA
isolated from cut tails. The presence or absence of OMP
was determined by multiplex PCR using primers
OMP137, OMP138, and OMP139 according to genotyp-
ing conditions provided by the Jackson Laboratory
(https://www.jax.org/strain/006667).

Fura-2 Ca2+ assay
Cells were grown to 100% confluence in 96-well plates

and washed with HBSS. They were then incubated in
HBSS containing 3 μM Fura-2-AM (Invitrogen) at 37 °C
for 30 min. Cells were washed thrice and incubated in
HBSS at room temperature for 20min to allow dye de-
esterification. Fluorescence was detected every 5 s with a
Gen 5 Luminescence spectrometer (BioTek, Winooski,
VT, USA) at 340 and 380 nm (excitation) and 510 nm
(emission). TRH (Sigma-Aldrich, St. Louis, MO, USA)
was prepared in HBSS immediately before use. Fluores-
cence values are reported as F/F0, which was calculated
using the following formula: (ΔF= (340 nm)f/(380 nm)f −
(340 nm)0/(380 nm)0).

ELISA for PRL
GH4 cells (1 × 106) were seeded in a 6-well plate (SPL

Life Sciences, Pocheon, Korea) and cultured for 18 h.
After two washes in a saline solution, the cells were
incubated in a fresh culture medium with saline or TRH
for 30 min. The medium was transferred to Eppendorf
tubes that were centrifuged for 3 min at 700 × g. A 100 μl
aliquot of supernatant was collected to determine the PRL
concentration in the medium (ng/ml) using a mouse/rat
enzyme-linked immunosorbent assay (ELISA) kit (Cal-
biotech). OMP-WT and OMP-KO mouse plasma samples
were collected and frozen until use.

Patients and samples
Human prolactinomas were derived from the Yonsei

Pituitary Tumor Center (Seoul, South Korea). Briefly,
human prolactinomas (n= 3, three female) were obtained
during transsphenoidal surgery as part of an ongoing
accession of human pituitary tumors. Tumors were frozen
in liquid nitrogen and stored at −80℃ until use. Clin-
icopathological parameters were retrospectively collected
from our institution. Normal pituitary glands (n= 3, three
female) were obtained from the National Forensic Service
(Gangwon-do, South Korea). The study was approved by
the Institutional Review Board of Yonsei University, and
informed consent was obtained for all subjects (IRB
number: 4-2011-0740).

Statistical analysis
Statistical analyses were carried out using Prism soft-

ware v.4.0.0 (GraphPad Inc., La Jolla, CA, USA). Each
experiment was repeated at least thrice. Statistical
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Fig. 1 (See legend on next page.)
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significance was determined using one-way analysis of
variance followed by post-hoc Tukey's analysis, and Stu-
dent’s t-test to compare the means of two different
groups. Significant differences are indicated with asterisks
(*P < 0.05; **P < 0.01; ***P < 0.001).

Results
OMP expression in rat pituitary cell lines and tissue
To determine whether OMP is expressed in the anterior

pituitary gland, we carried out an immunohistochemical
analysis using antibodies against various hormones,
including PRL, growth hormone (GH), adrenocortico-
tropic hormone (ACTH), thyroid-stimulating hormone
(TSH), and follicle-stimulating hormone (FSH) produced
by somatotrophs, lactotrophs, adrenocorticotrophs, thyr-
otrophs, and gonadotrophs, respectively, of the human
pituitary gland. We observed OMP-expressing cells sig-
nificantly colocalized with PRL-expressing cells. In con-
trast, a portion of cells positive for TSH, FSH, GH, and
ACTH was negative for OMP (Fig. 1a and S1 Fig). Con-
sistent with these findings, rat pituitary immunolabeling
revealed a high degree of PRL and OMP co-expression
(Fig. 1b). We also examined OMP expression in GH3 and
GH4 PRL-secreting rat pituitary cells by western blotting.
OMP levels were found to be similar to those in the
olfactory bulb (Fig. 1c), with a higher level observed in
GH4 than in GH3 cells. These findings suggested that
OMP plays an important role in pituitary lactotrophs.

Loss of OMP expression increases PRL synthesis in vitro
As OMP was found to be expressed in human and rat

lactotrophs, we investigated whether modulating its
expression would affect PRL secretion. We used siRNAs
to knock down OMP expression in GH4 cells and ana-
lyzed the levels of secreted PRL using ELISA. PRL levels
were 2.15-fold higher in the culture supernatant of GH4
cells transfected with siOMP (siOMP-GH4 cells) than in
control siRNA-transfected cells (siCON-GH4) (Fig. 2a).
We examined the association between OMP expression
and PRL synthesis using RT-PCR, and found that PRL
mRNA levels were 2.01-fold higher in siOMP-GH4 than
in siCON-GH4 cells (Fig. 2b). A similar trend was
observed for PRL protein expression. Extracellular signal-
regulated kinase (ERK) signaling is a point of convergence

for PRL gene transcription19; a western blot analysis also
revealed an increase in ERK1/2 phosphorylation in
siOMP-GH4 cells, compared to that in the control cells
(Fig. 2c and S2 Fig).
We also investigated whether OMP overexpression in

lactotrophs could alter PRL gene expression. OMP-
overexpressing GH4 (OMP-GH4) cells had 0.15-fold
lower PRL mRNA levels than cells transfected with empty
vectors (Empty-GH4) (Fig. 2d). Moreover, ERK1/2 phos-
phorylation was decreased in OMP-GH4 cells, compared
to Empty-GH4 cells (Fig. 2e). As OMP knockdown
increased ERK/12 phosphorylation, we investigated whe-
ther aberrant OMP-induced ERK1/2 activation could
contribute to the development of pituitary hyperplasia or
tumors. However, cell-cycle distribution and cell pro-
liferation were unaltered in siOMP-GH4 cells (Fig. 2f, g).
These data indicated that OMP inhibits PRL synthesis by
suppressing ERK1/2 phosphorylation.

OMP modulates TRH-induced ERK1/2 phosphorylation and
Ca2+ influx
In pituitary lactotrophs, PRL gene expression is stimu-

lated by neuropeptides such as TRH and E2, and is sup-
pressed by dopamine via D2-type receptors20–25. Based on
our finding that OMP could modulate PRL synthesis and
secretion in pituitary lactotrophs, we investigated the
signaling pathway involved. GH4 cells transfected with
either siCON or siOMP were treated with the dopamine
agonist cabergoline (Cab, 1 μM), β-estradiol (E2, 1 nM), or
TRH (100 nM). There was no significant difference in PRL
mRNA levels between siCON-GH4 and siOMP-GH4 cells
following treatment with Cab or E2, as determined by
real-time PCR (Fig. 3a). However, PRL expression was
increased by 2.46-fold in siCON-GH4 cells by TRH
treatment, whereas no change was observed in siOMP-
GH4 cells (Fig. 3a). In addition, TRH treatment increased
PRL secretion, whereas OMP knockdown abolished this
effect (Fig. 3b). Moreover, ERK1/2 phosphorylation
increased by about 4.82-fold in siCON-GH4 cells upon
TRH treatment (Fig. 3c). ERK1/2 phosphorylation levels
were similarly increased in siOMP-GH4 cells with or
without TRH treatment (8.75- vs. 7.41-fold) (Fig. 3c and
S3 Fig). These findings indicate that OMP inhibits TRH-
induced ERK1/2 phosphorylation and PRL secretion.

(see figure on previous page)
Fig. 1 Expression of OMP in rat pituitary cell lines and tissue. a Representative images of OMP immunofluorescence labeling in normal human
pituitary sections. OMP expression and all five cell types in the anterior pituitary were detected by antibodies against PRL, GH, ACTH, TSH, and FSH.
OMP colocalized with PRL in lactotrophs, but not in other cell types. Images were obtained with a laser scanning microscope at 200× and 800×
magnification. b Representative images of OMP and PRL immunofluorescence labeling in rat pituitary sections. c OMP expression in rat PRL-secreting
cell lines. OMP protein levels in GH3 and GH4 cells, kidney (negative control), and olfactory bulb (positive control) was determined by western
blotting. Blots are representative of three experiments
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Fig. 2 Effect of OMP deficiency on PRL synthesis in vitro. a PRL concentration in the supernatant of GH4 cells transfected with siCON or siOMP
was evaluated using ELISA. Results represent the mean of at least three independent experiments. **P < 0.01 vs. siCON group. b RT-PCR analysis of
PRL mRNA expression in GH4 cells transfected with siCON (−) or siOMP (+) (top). Semi-qRT-PCR analysis of OMP and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA levels (bottom). *P < 0.05 vs. siCON group. c Effect of siCON or siOMP on the expression of indicated proteins in GH4
cells, as determined by western blotting. d RT-PCR analysis of PRL mRNA expression in GH4 cells transfected with empty vector (−) or OMP
overexpression plasmid (+) (top). Semi-qRT-PCR analysis of OMP and GAPDH mRNA levels (bottom). Data represent mean ± SE of triplicate samples.
*P < 0.05 vs. empty vector group. e Expression of indicated proteins in GH4 cells transfected with empty vector of OMP overexpression plasmid, as
determined by western blotting. f GH4 cells were transfected with siCON or siOMP for 48 h, and cell-cycle distribution was determined by propidium
iodide staining and fluorescence-activated cell sorting. g Proliferation of GH4 cells transfected with siCON or siOMP for 5 days. Data are representative
of three experiments
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In lactotrophs, TRH acts via a GPCR to increase
phospholipase C activity, Ca2+ release from intracellular
stores, and Ca2+ influx through L-type voltage-gated
Ca2+ channels26. Based on these findings and the
observations that basal PRL synthesis and secretion and
TRH insensitivity were increased by blocking OMP
expression in GH4 cells, we examined whether Ca2+

influx was also altered using the Fura-2-AM Ca2+ influx

assay. Consistent with previous studies26, treatment with
100 nM TRH markedly increased intracellular Ca2+

levels in siCON-GH4 cells, but not in siOMP-GH4 cells
(Fig. 3d). Moreover, basal intracellular Ca2+ levels were
1.33-fold higher in siOMP-GH4 cells than in siCON-
GH4 cells (Fig. 3e). These data indicate that OMP reg-
ulates basal intracellular Ca2+ levels and TRH-induced
PRL exocytosis.

Fig. 3 Role of OMP in TRH-induced ERK1/2 phosphorylation and Ca2+ influx. a RT-PCR analysis of PRL mRNA expression in GH4 cells transfected
with siCON or siOMP and treated with Cab (1 μM), E2 (10 nM), or TRH (100 nM). Results represent the mean of at least three independent experiments.
ns, not significant; **P < 0.01 vs. non-transfected (NT) control. b PRL secretion by GH4 cells transfected with siCON or siOMP. Results represent the
mean of at least three independent experiments. ns, not significant; *P < 0.05 vs. NT control. c GH4 cells were transfected with indicated siRNAs and
phosphate-buffered saline (PBS) or 100 nM TRH was added for 10 min, followed by western blotting. d GH4 cells were transfected with siCON or
siOMP, then loaded with Fura 2-AM and treated with TRH (100 nM) to stimulate Ca2+ release. Intracellular Ca2+ levels were measured based on
ratiometric measurements of absorbance at 340 and 380 nm (340/380). Intracellular Ca2+ levels were continuously monitored for 5 min. Values
represent means. e Peak store-operated Ca2+ entry in PBS-treated siCON- and siOMP-transfected cells. Values represent mean ± SE. *P < 0.05
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Loss of OMP expression leads to elevated basal PRL levels
and loss of sensitivity to TRH in vivo
We next examined whether OMP expression in pitui-

tary lactotrophs plays a role in basal PRL secretion and
TRH sensitivity in vivo using OMP-knockout (OMP-KO)
mice6,27. We evaluated circulating PRL levels in 20-week-

old male OMP-WT (OMP-WT), OMP-heterozygote
(OMP-het), and OMP-KO mice using ELISA, and found
that basal circulating PRL levels were higher in OMP-KO
than in OMP-WT mice (11.9 ± 2.3 ng/ml vs. 5.6 ± 0.6 ng/
ml) (Fig. 4a).
To establish the function of OMP in anterior pituitary

tissue, we examined ERK1/2 activation in primary tissue
cultures. Consistent with the observed increase in circu-
lating PRL concentration, OMP-KO mice showed a
higher basal ERK1/2 phosphorylation level than OMP-
WT mice. Anterior pituitary specimens from OMP-WT
mice showed increased ERK1/2 phosphorylation upon
TRH treatment, compared to those from saline-treated
OMP-WT mice, whereas in OMP-KO mice, ERK1/2
phosphorylation levels were unchanged by TRH treat-
ment (Fig. 4b).
To evaluate TRH-induced PRL secretion in the anterior

pituitary, PRL levels in the supernatant of anterior pitui-
tary tissue cultures were estimated using ELISA. Con-
sistent with the results of the western blot, secreted PRL
levels were 2.35-fold higher in cultures of OMP-WT
anterior pituitary tissue treated with TRH than in those
treated with saline (9.7 ± 0.9 vs. 4.13 ± 0.6 ng/ml). How-
ever, in the absence of OMP, secreted PRL levels were
comparable between saline- and TRH-treated samples
(8.24 ± 1.6 and 8.53 ± 1.7 ng/ml, respectively), indicating
that the loss of OMP resulted in TRH desensitization
(Fig. 4c). These data suggest that OMP mediates pituitary
lactotroph PRL synthesis and TRH-induced PRL
secretion.

OMP expression is dysregulated in PRL-secreting pituitary
adenoma
To confirm the regulation of PRL by OMP in the human

pituitary, we analyzed OMP expression in normal pitui-
tary and PRL-secreting adenoma (prolactinoma) tissue
samples by western blotting. Consistent with results
obtained in cell cultures and mice, protein kinase C (PKC)
and ERK1/2 phosphorylation levels, as well as total ERK1/
2 and PRL expression, were higher in prolactinoma than
in normal pituitary tissues. In contrast, relative OMP
expression was lower in the former than in the latter
(Fig. 5a). An immunohistochemical analysis revealed that
OMP was expressed in PRL-secreting cells of normal
human pituitary tissue, but was almost undetectable in
adenoma tissue. OMP expression was particularly low in
areas of high PRL immunoreactivity (Fig. 5b). These
results suggest that aberrant OMP expression in lacto-
trophs increase ERK1/2 activation and PRL secretion,
thereby promoting prolactinoma and tumorigenesis.

Discussion
The results of this study indicate that OMP is involved in

PRL production and secretion by lactotrophs. OMP

Fig. 4 Loss of OMP expression increases basal PRL levels and
leads to TRH desensitization in vivo. a Basal circulating PRL levels in
OMP-WT (+/+), OMP-heterozygote (+/−), and OMP-KO (−/−) mice,
as determined by ELISA. Values represent the mean ± SE (OMP+/+, n
= 6; OMP+/−, n= 6; OMP−/− n= 6). *P < 0.05 vs. +/+ group. b
ERK1/2 phosphorylation in OMP+/+ or OMP−/− anterior pituitary
tissue treated with saline or TRH (1 μM), as determined by western
blotting. β-Actin served as a loading control. c PRL levels in the culture
supernatant of OMP+/+ and OMP−/− anterior pituitary tissue
treated with saline or TRH (1 μM), as determined by ELISA. Results
represent the mean of at least three independent experiments. ns, not
significant; *P < 0.05 vs. (−) control
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deficiency increased PRL expression and release in vitro and
in vivo by failing to suppress ERK1/2 phosphorylation and
modulate intracellular Ca2+ levels. In addition, OMP was
found to be associated with PRL secretion induced by TRH,
but not by other known neurohormones such as dopamine
and E2. Finally, OMP expression was negatively correlated
with PKC-ERK1/2 activation in human pituitary gland.

Recent studies have reported that OMP and ORs are
expressed in non-olfactory tissues, including the pancreas,
colon, bladder, and thyroid gland15,18,28–30. However,
there have been no previous investigations on the
expression and physiological functions of OMP in the
pituitary gland. In the present study, we provide the first
evidence that OMP is co-expressed with PRL in

Fig. 5 OMP expression in normal human pituitary and PRL-secreting pituitary adenoma. a Negative correlation between OMP and PKC-ERK1/2
levels in normal human pituitary (lanes 1–3) and prolactinoma (lanes 4–6) tissues, as determined by western blotting. β-Actin served as a loading
control. b Representative images of OMP (green) and PRL (red) immunofluorescence labeling in normal and prolactinoma tissue sections. OMP
colocalized with PRL in normal tissues, but was undetectable in prolactinoma. Images were obtained by laser scanning microscopy at 100×
magnification
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lactotrophs. Moreover, the higher expression of OMP in
GH4 than in GH3 cells suggested its involvement in PRL
regulation (Fig. 1), as GH4 cells are derived from GH3
cells and exhibit many features of lactotrophs31–33.
ERK1/2 activation plays an important role in the pro-

liferation of PRL-secreting adenomas and in PRL secre-
tion by the pituitary gland34,35. ERK1/2 phosphorylation
was increased by OMP deficiency (Figs. 2, 4), which was
associated with increased PRL secretion, but did not alter
cell proliferation or induce tumorigenesis. This was con-
sistent with a previous study, which demonstrated that the
activation of ERK/mitogen-activated protein kinase
(MAPK) in GH4 cells induced the differentiation of
bihormonal somatolactotroph GH4 precursor cells into
PRL-secreting lactotrophs. It was also reported that per-
sistent activation of ERK/MAPK signaling not only failed
to promote cell proliferation, but also reduced tumor-
igenesis of GH4 cells in vitro and in vivo36. These findings
demonstrated that ERK1/2 activation induced by OMP
deficiency was not associated with tumorigenesis, but
promoted PRL production and secretion.
Pituitary PRL secretion is regulated by endocrine neu-

rons in the hypothalamus. The most important of these are
the neurosecretory tuberoinfundibulum neurons that
secrete dopamine, which acts on lactotrophs to inhibit PRL
secretion. In contrast, TRH stimulates PRL release. TRH
receptor (TRHR) activation induces PKC, phosphatidyli-
nositol, and Ca2+ signaling pathways37,38. We observed that
Cab and E2 treatment similarly inhibited and stimulated
PRL production in GH4 cells, respectively, irrespective of
the presence or absence of OMP. However, TRH did not
induce an increase in intracellular Ca2+ and ERK1/2
phosphorylation in cells and mice lacking OMP (Fig. 3c, e).
We speculated that OMP modulated Ca2+-mediated PKC/
MAPK signaling, which is the main pathway responsible
for TRH-induced PRL expression. Previous studies have
shown that OMP modulates Ca2+ extrusion from olfactory
sensory neurons by directly interacting with brain-
expressed X-linked 1 (Bex1) proteins, which can also
bind to the Ca2+-dependent modulator, calmodulin
(CaM)8,11,13,39,40. The OMP–Bex1–CaM interaction can
explain the desensitization to TRH stimulation that is
observed in the absence of OMP. Moreover, it has been
reported that the Ca2+-CaM complex itself modulates PRL
gene expression. These findings indicate that OMP plays a
role in PRL production and secretion in lactotrophs
through the modulation of Ca2+ and TRH signaling.
The observed desensitization might also have been due

to the downregulation of TRHR in lactotrophs in the
absence of OMP, as reduction in receptor density is an
important mechanism for modulating cell responsive-
ness41,42. Interestingly, TRHR expression was decreased in

GH4 cells and mice lacking OMP (S4 Fig). However, it is
still unclear whether this effect is due to decreased tran-
scription or increased mRNA degradation.
PRL plays a critical role in reproductive function;

hyperprolactinemia is associated with anovulation and
may directly or indirectly cause infertility43. We found
that circulating PRL levels were increased in mice lacking
OMP (Fig. 4a), which could explain the sub-fertile phe-
notype of these mice (https://www.jax.org/strain/006667).
Interestingly, OMP was exclusively expressed in the
normal pituitary gland, and not in prolactinoma tissues.
Moreover, there was a negative correlation between PKC-
ERK1/2 activation and low OMP expression (Fig. 5a and
S5 Fig). The regulation of OMP by PKC-ERK1/2 is sup-
ported by reports that OMP can modulate olfactory sig-
naling via Ca2+ extrusion6,8,11,13,44. We proposed that the
absence of OMP in lactotrophs caused abnormalities in
PRL synthesis and secretion.
In summary, this study provides evidence that OMP in

lactotrophs of the anterior pituitary gland plays a role in
normal production and secretion of PRL, and that asso-
ciated molecules function in TRH-induced PRL secretion.
These findings can aid in the development of improved
strategies for managing hyperprolactinemia.
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