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Abstract
The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges
unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number
variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with
higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy
of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and
insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where a
high depth of reads is not always capable to correct for these errors. In this study, we compared the genotyping of
mitochondrial DNA variants in three samples using PacBio’s Sequel (Pacific Biosciences Inc., Menlo Park, CA, USA) long-
read sequencing and illumina’s HiSeqX10 (illumine Inc., San Diego, CA, USA) short-read sequencing data. We concluded
that, despite the differences in the type and frequency of errors in the long-reads sequencing, its accuracy is still comparable
to that of short-reads for genotyping short nuclear variants; due to the randomness of errors in long reads, a lower coverage,
around 37 reads, can be sufficient to correct for these random errors.

Introduction

The last decade represents an unprecedented era of genetic
research; tremendous amounts of genomic data are being
generated, together with a parallel development in computa-
tional power and advancements of bioinformatics algorithms
to decipher genomic patterns in these data. The time- and
cost-effectiveness of the next-generation sequence-by-
synthesis technology, made it the most widely used sequen-
cing technology in research and clinical investigations. Most

of today’s bioinformatics algorithms are, therefore, designed
to analyze short-read sequencing data.

Following successful genetic discoveries using short-
read sequencing, the research community started to face
new obstacles due to the inability of short-read sequen-
cing to effectively resolve specific characteristics of the
human genome. These obstacles can be summed into: (a)
inability of short-reads to accurately map onto complex
parts of the genome [1, 2], (b) the need for very complex
algorithms, which in turn require expensive computational
power, to accurately identify structural variants (SVs), (c)
despite all the advancements in bioinformatics, some
quantitative analyses like copy number variations
(CNVs), are still hard to be accurately identified and
assessed using short reads. The fact that parts of the
human genome are still yet to be fully constructed in
the reference genome, is another representation of the
need for longer sequences to understand the complexity of
genomic sequences.

The emergence of Next-Next-Generation sequencing
technologies by PacBio (Pacific Biosciences Inc., Menlo
Park, CA, USA) single molecule real-time (SMRT) tech-
nology [3], and Oxford Nanopore (Oxford Nanopore
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Technologies Ltd., Oxford Science Park, Oxford, UK) long
sequencing technologies [4], brought new opportunities for
genetic researchers to overcome the shortcomings of short-
read sequencing. However, these long-read sequencing
technologies still have their own limitations, represented
mainly by inaccuracies at the base-by-base level. These
errors are mainly due to low signal to the noise ratio [5]; in
addition, studies showed that the single nucleotide errors of
SMRT long-read sequencing can be partially attributed to
base substitution errors of polymerase enzyme [6, 7] with
random distribution across long reads. Short insertion and
deletion errors (indels), represent the majority of SMRT
errors, with a tendency to occur around homopolymer
regions and can also be the result of polymerization slow-
down around non B-form DNA conformations, like G-
quadruplexes [8]. Nonetheless, these errors are still random
in nature and as the number of polymerization passes
increases, the resulting consensus sequence accuracy would
increase; this is being exploited by the circular consensus
sequencing (CCS) [9] and the very recently developed high
fidelity (HiFi) sequences [10].

The higher error rate of long-read sequencing, in com-
parison to the short-read one [5], has led scientists to resort
to long-read only when trying to fathom genetic research
muddles that involve a complex part of the genome, or
structurally challenging for short-read to handle efficiently.
At the same time, the short-read sequencing is still the
technology of choice for identifying single nucleotide var-
iants (SNVs) and short insertions and deletions (indels).
Therefore, bioinformaticians started to find ways of hybri-
dizing the results of both short- and long-read data, to get
reliable genomic sequences by exploiting the lower error
rate of short-reads in combination with the length of long-
reads, which are long enough to accurately map to complex
parts of the reference genome, to identify SVs, CNVs and
repetitive regions.

Several studies tried to measure error rates of short-read
sequencing. A study by Nakamura et al. [11] was among the
first to describe specific systematic errors produced by
illumina sequencers. Despite the following development in
illumina’s technologies, short-read sequences, nonetheless,
are still suffering from systematic errors unequivocally
associated with specific base-sequences. Pfeiffer et al. [12]
performed a systematic evaluation of error rates, and they
determined the error rate to be 0.24 ± 0.06% per base and
6.4 ± 1.24% of the reads are mutated for illumina’s short-
read sequencing technology.

Nanopore sequencing errors were shown to have some
systematic patterns and less random than PacBio’s
sequencing errors [5], however, despite the higher fre-
quency of errors in long reads, the extended length of the
PacBio’s and Nanopore’s reads still provide more ran-
domness of errors-per-read in comparison to short reads.

In this study, we compare SNV detection in three cases
that have had whole-genome sequencing using both, illu-
mina’s short-read sequencing, and PacBio’s SMRT
sequencing technologies. The comparison was done using
genotyping of the mitochondrial DNA (mtDNA) rather than
the nuclear one for the following reasons: (a) compared to
nuclear DNA, the number of mtDNA copies inside a cell is
tremendously high, exceeding the nuclear one by thousands
of folds in some cells, therefore, it naturally provides higher
depth of coverage for any sample’s whole-genome
sequencing which is necessary for accurately comparing
variant allele frequencies (VAF) in reads; (b) haploid-
phasing of variants in nuclear DNA is necessary for
obtaining a higher recall rate, as has been described in
multiple studies [13–16]; therefore, being a haploid DNA,
mtDNA makes variants identification more comparable
between short and long sequences; (c) mtDNA is a very
short sequence of DNA compared to any nuclear chromo-
some, therefore, its reassembly against the reference is more
accurate compared to nuclear DNA, for identifying baseline
heteroplasmy fractions.

Synthetic long reads, generated by technologies like 10X
Genomics’ bar coding (Pleasenton, CA, USA) [17] can
provide chromosomal reads that are exponentially longer
than mtDNA with high confidence of being from the same
DNA fragment. However, this study aims to make a direct
comparison between the standard output of long-read
sequencing and short-read sequencing technologies, with-
out resorting to costly and sophisticated technologies in
avoiding the haplotype mix-up.

Materials and methods

Sample selection

Three samples of unrelated individuals were selected in our
laboratory, where both short- and long-read whole-genome
sequencing analyses were done for each sample. Sample-1 is
of an 8-year-old female who was diagnosed with Krabbe
disease (OMIM# 245200), she has beta-galactocerebrosidase
deficiency and a heterozygous mutation. No mitochondrial
variants were found to be responsible for her clinical diag-
nosis. Sample-2 is of a 40-year-old female who was diag-
nosed with benign adult familial myoclonus epilepsy
(BAFME) (OMIM# 601068), she is referred to as individual
[III 2] in a BAFME family that was studied by Mizuguchi
et al. [18]. Sample-3 is of a 31-year-old male patient with
definite hereditary hemorrhagic telangiectasia (HHT)
(OMIM# 187300), based on the Curaçao’s diagnostic criteria
[19]. His three-generation family history is suggestive of
autosomal inheritance of HHT and no mitochondrial variants
were found to be possibly linked to his HHT diagnosis.
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Long-read library preparation

Genomic DNA of the three samples was extracted from
peripheral blood leukocytes using QuickGene (Kurabo) for
samples 1 and 3, and standard phenol-chloroform for sample
2. DNA size and integrity were assessed using pulse-field
agarose gel electrophoresis, followed by DNA concentration
measurement using Qubit fluorometer (Life Technologies).
Fragmentation, using g-TUBE (covaris) and 1500 × g cen-
trifugation, was done before purifying the fragmented DNA
by AMpure PB magnetic beads (Beckman Coulter).

Five micrograms of each sample’s fragmented DNA was
utilized for SMRTbell library reparation using SMRTbell
Template Prep Kit 1.0 SPv3, Sequel Binding Kit 2.0,
SMRTbell Clean-Up Column v2 Kit, and MagBead Kit v2
(Pacific Biosciences). Briefly, the resultant SMRTbell
template was enriched for DNA fragments of >10 kb via
BluePippin (Sage Science) size-selection. Purification of the
size-selected was done using AMpure PB before performing
DNA repair reaction. SMRTbell template DNA was
annealed with Sequel Polymerase 2.0. The Clean-up Col-
umn kit was used to purify the SMRTbell template DNA/
polymerase complex, before the diluting the purified com-
plex to a concentration of 20 pM. Finally, the purified
complex was mixed with MegaBead to produce MegaBead-
bout SMRTbell complex which was loaded onto Sequel
SMRT Cell 1M v2. A total of four cells were used for
samples 2 and 3 and six cells were used for sample 1, with a
data collection time of 6 h for each SMRT cell.

Short-read library preparation

Genomic DNA was extracted from peripheral blood lym-
phocytes. Using TruSeq DNA PCR-free library preparation
kit, genomic DNA library was constructed before sequen-
cing with illumina’s HiSeqX10, using single index. Gen-
erated sequence data had an average of 32.8 million of 150
nucleotide-long paired-end reads for each sample.

Long-read mitochondrial DNA data analysis

For the purpose of comparison, we kept the consistency of
analysis with that of short-read by performing the long-read
analysis on whole genome single-pass subreads obtained
from PacBio Sequel sequencer. PacBio’s single-pass sub-
reads were generated by obtaining long sequences from the
SMRTbell templates, after the removal of adapter sequen-
ces. Each sample’s subreads BAM file contains all the
subreads generated from all cells used for a specific sample.
In addition to the nucleotide-sequence information, a full set
of quality and kinetic parameters are attached to each sub-
read; therefore, for a full utilization of these technology-
specific data, the mapping and analysis were done using the

standard software included in PacBio’s SMRT tools v.6.0.0
(Pacific Biosciences).

Subreads produced by cells of each sample were aligned
to mtDNA rCRS reference (NC_012920.1), using BLASR
(v5.1) [20] with default mapping options.

Following alignment to the rCRS reference genome, the
average N50 length of polymerase reads for the whole-
genome data was 14,761 bp, and the average number of
subreads per sample was 378, with an average length of
3906 bp (Supplementary Table 1). The average con-
cordance of samples’ data with the reference is 0.8261.

Short-read data analysis

The Short-read data analysis of mtDNA was done following
best-practice guidelines of Genome Analysis Toolkit (GATK
v.4.1) [21] (Broad Institute), since GATK is still regarded as
the gold standard and one of the most widely used software
toolkit for genotyping short-read data. In version 4.1 of
GATK, the Mutect2 tool, which was primarily designed to
call somatic short nuclear variants using local assembly of
haplotypes, has been revised to include the “mitochondria
mode,” where the LOD score is set to 0 for the capability to
annotate possible nuclear mitochondrial sequences using
Poisson distribution of the median autosomal coverage.
Therefore, utilizing Mutect2 can provide a robust detection of
very low fractions of mitochondrial variants after a statistical
exclusion of “nuclear mitochondrial DNA segments” (NuMT)
which represent transposed mitochondrial sequences in the
nuclear DNA. In addition, Mutect2 utilizes the original
DREAM challenge-winning engine [22], together with the
HaplotypeCaller machinery of local de novo reassembly.
Therefore, Mutect2 can provide high sensitivity in combina-
tion with specificity in calling variants of mtDNA.

Following the GATK best-practice guidelines, short-reads
were mapped to GRCh38 genome reference that includes the
revised Cambridge Reference mitochondrial Sequence
(NC_012920.1) [23], using Burrows-Wheeler Alignment
Tool (bwa v0.7.17-r1188) [24]. Since bwa aligner is not
designed to evenly align circular reads of the mtDNA, the
alignment process included two branches where the second
branch was aligned to the mtDNA reference that was shifted
by 8000 nucleotides. Following alignment, the resultant two
BAM files for each sample were passed through a pipeline
of Genomic Analysis Toolkit (GATK v.4) [21] tools that
included duplicate reads marking, local indel realignment,
and quality scores recalibration, before being genotyped
using Mutect2 in mitochondrial mode.

Long-read data analysis

The genotyping of long-read mapped data were done using
variantCaller tool (v2.2.2) of PacBio’s SMRTtools (v6.0).
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variantCaller is provided by PacBio in the Geno-
micConsensus package; when it runs in default settings, as
we have done for our samples, it utilizes the Arrow con-
sensus model for variant calling against the reference.
Arrow algorithm is an improved model of Quiver [25]
which is based on hidden Markov principle that utilizes the
consensus data of long reads to filter out random errors.

Haplogroup assignment

The haplogroup assignment for each sample was done using
mitolib v.0.1.2 software (https://github.com/haansi/mitolib)
integrated into the contamination analysis step of GATK 4.1
tools [21]. The mitolib’s haplockecker checks for mtDNA
contamination using Phylotree 17 and assigns the most
probable haplotype for each mtDNA short-read BAM file.

Sanger sequencing

A total of seven discrepant variants between both, short-
and long-read sequencing analyses, were chosen for Sanger
sequencing. All variants that have VAF below 0.1, except
for one variant in sample-1 that has a borderline VAF of
0.096, were excluded from Sanger sequencing confirmation.
Sequences of primers used are available upon request.

Following standard PCR amplification, and capillary
electrophoresis using ABI 3130xl, we had to modify the
PCR protocol to accommodate for a GC-rich region.

Tagging variants

Several studies concluded the high likelihood for illumina’s
short-read variants with VAF below 1% to be erroneous
[26, 27]; in fact, most of these reads in our study had multi
heteroplasmic variants which were annotated by Mutect2 as
“chimeric original alignment” or as “strand artifacts”. It is
also important to mention that a number of studies describe
specific mtDNA variants associated with illumina’s short-
read sequencing as sequencing artifacts [26, 28]. Generally
speaking, there are two main sources of errors: (a)
technology-specific systematic errors, as with variants
flanked by low-complexity regions [29]; (b) bioinformatics
errors, as in the miscalling of variants around the “N” pla-
ceholder at 3107 position of the rCRS reference. Therefore,
for an unbiased comparison between the long- and short-
read sequencing technologies, we tagged all variants that
belong to any of the aforementioned categories as likely
erroneous variants. These variants lie in the following
positions of mtDNA, where it is characterized by low
complexity sequences or the place holder: (301, 302, 310,
316, 3107, and 16182–16192).

According to a comprehensive study by Spencer et al.
[30]. In order to accurately detect variants with VAFs less

than 0.01, specialized library preparation methods are
required; otherwise, variants called using common methods
with VAFs less than 1% are very likely to be erroneous.
Therefore, following the short-read genotyping, variants
with VAF less than 0.01 were removed before proceeding
with further analyses.

Statistical analysis for interrater reliability

Due to the small number of samples being analyzed, and the
necessity to mask tagged variants, the utilization of standard
statistical analyses, like t-test and chi-square analyses,
becomes inapplicable. We can assume, however, that long-
and short-read genotyping analyses are two raters for each
sample where: (a) each sample’s mtDNA result is inde-
pendent from other sample’s, since they are not related
individuals; (b) the probability for each position in a sam-
ple’s mtDNA to be mutated is independent from other
positions’, and it can be either identical to the reference or
not, with no preference for the rater to report each position
to be identical to the reference or not, in other words, each
position in a sample’s DNA has a mutually exclusive
probability of being mutated or not, and being identical to
the reference or not is independent among different posi-
tions; (c) the raters, short- and long-read technologies, are
operating independently from each other.

According to the proposed conditions by Jacob Cohen in
1960 [31] weighted Cohen’s kappa statistics represents the
best statistical model for comparing the agreement between
long- and short-read data analyses. Since both technologies
cannot provide accurate genotyping at the masked positions,
it became necessary to adopt weighted Kappa’s statistical
analysis, since in these masked regions, no technology was
proven to be superior to another, and giving these masked
regions’ position a third status of ‘unknown’ can safely
evaluate the agreement between the two raters by providing
low weight to these masked regions and reduce the effect of
their obscurity on the analysis. If we were to choose another
more familiar statistical measurements like t-test, we would
need larger number of cases in order to have a statistically
significant analysis of the agreement between the two tests.

The formula for Cohen’s kappa [31] calculation is:

κ ¼ P að Þ � P eð Þ
1� P eð Þ

Where P(a) is the accuracy, or the actual agreement
between the two raters, and P(e) is the estimated or
hypothetical probability of agreement between the two
raters.

In our study, we implemented the quadratic weighted
Cohen’s kappa [32] calculation, which takes the three
possibilities at each position: reference, mutated, unknown,
as independent variables. Therefore, the disagreement
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between the two raters are treated equally, with the different
levels of agreements contribute to the value of kappa.

The formula for our quadratic weights will therefore be:

wi ¼ 1� LongRead value� ShortRead valueð Þ2
Total number of categories� 1ð Þ2

Since we have a total of three categories:

wi ¼ 1� LongRead value� ShortRead valueð Þ2
4

Where wi is the weighted agreement score at position i.
Values are 1 for reference, 2 for mutation, and 3 for
unknown.

Additionally, since we are analyzing the data for three
samples only, Cohen’s weighted kappa scoring reduces bias
through: (a) the consideration of each position of the
mtDNA as a separate experiment, for both technologies to
analyze, providing a stronger statistical power for the cal-
culation of kappa coefficient; (b) the random errors of
SMRT long-read sequencing, can be accounted for in the
coefficient calculation for each position of the mtDNA;
since we are doing the calculation in respect to the total
number of possible values, which is three in our case; (c) the
ability to include the masked regions’ variants in the cal-
culation, using a different weight of disagreement.

It’s important to mention that the kappa coefficient is not
a directly interpretable measure of agreement [33], but rather
an indication of the level of agreement. Kappa coefficient
values above 0.81 represent an almost perfect level of
agreement with a reliability of data between 64 and 100%
(see Supplementary Table 2 for description of all levels).

In calculating kappa coefficient for each sample, we used
the standard weighted kappa coefficient tool of the specia-
lized python library scikit-learn [34] by comparing long-
and short-read analyzed data at each position of the 16569
mtDNA reference.

Results

Short-read mitochondrial DNA variants analysis

The average total number of variants for short reads is 39.3,
with averages of 35.67 SNVs and 3.67 indel variants per-
sample. For the called variants in each sample, the average
maximum and minimum coverage values are 4984 and
1037, respectively (Table 1).

Long-read mitochondrial DNA variants analysis

The average total number of variants for long reads is 36.67,
with averages of 34.3 SNVs and 2.3 indel variants per Ta
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sample. For the called variants in each sample, the average
maximum and minimum coverage values are 228.3 and
49.3, respectively (Table 1).

The average total number of variants per sample is very
comparable between the two technologies (Fig. 1a, c, e),
despite the disproportional difference of coverage.
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However, four untagged variants genotyped using short-
read analyses with VAFs ranging from 0.032 to 0.096, are
not detected with the long-read analysis.

mtDNA haplogroups

Two samples were assigned a single haplotype (B4c1a1 for
sample-1 and D4a1a1 for sample-2), while one sample
(sample-3) was assigned both a major and a minor hap-
logroup (D4b2b1 at 98.6% and D4b2 at 87.3%) (Table 1).
The two haplogroups assigned to sample-3 are not phylo-
genetically distant, therefore, it is very unlikely to be due to
contamination.

Homoplasmy versus heteroplasmy

The high depth of reads of short-read sequence data, and its
analysis using Mutect2 tool from GATK 4.1 [21] which is
specialized for detecting variants with high sensitivity at
different VAFs, made it possible to reliably detect hetero-
plasmic variants. On the other hand, the substantially lower
coverage of PacBio’s long reads analyzed using Arrow
algorithm did not yield any heteroplasmic variants.

In order to accurately compare the performance of the
two technologies in identifying variants, including the het-
eroplasmic ones, it is necessary to mask variants in tagged
regions, since most of these variants are artifacts, and
therefore likely to present in heteroplasmic form (Supple-
mentary Tables 3, 4 and 5).

The majority of heteroplasmic variants lie in the tagged
regions, using Sanger sequencing to reliably verify hetero-
plasmic variants at these regions was not possible due to the
low VAFs of these variants, and the long homoploymers in
these regions.

Cohen’s kappa coefficients

The weighted kappa coefficient for samples 1, 2, and 3 at
full coverage are 0.908, 0.980, and 0.997, respectively

(Table 2). Based on the standard interpretation of these
values (Supplementary Table 2), these weighted kappa
coefficients indicate that the levels of agreement between
long- and short read mtDNA genotyping are “almost per-
fect” at full coverage. With 82.4%, 96%, and 99.4% relia-
bility for samples 1, 2, and 3, respectively.

Sanger sequencing

All of the discrepant variants between two technologies we
tried to confirm using Sanger sequencing were in tagged
regions of low complexity. Other discrepant variants that
are outside the tagged regions have VAFs below 0.1, which
cannot be reliably confirmed using Sanger sequencing.
However, we still tried to confirm one variant in sample-1 at
position 240 which is of VAF of 0.096, but unfortunately
the signal generated was unreliable to validate or reject it.

A GC-rich region, the tagged low complexity region
16181–16193, was re-sequenced using specific protocol for
GC-rich regions for both sample-1 and sample-2, however,
the obtained results still failed to provide clear validation of
the results, despite using the special protocol.

Similar results were seen in the rest of the discrepant
variants we tried to confirm using Sanger sequencing.

Long-read random downsampling and its effect on
genotyped variants

To have a better understanding of the relationship between
genotyping and the depth of reads of PacBio’s long-read
sequencing, random downsampling of the reads was per-
formed on each of the three samples. By removing 20% of
the reads successively, and compare the genotyping results
of 20, 40, 60, 80, and 100% of the total coverage. Figure 1b,
d and f show the variants genotyping at different coverages
for each sample.

After random downsampling, weighted kappa-coefficient
of agreement between variant callings at different coverage
levels against short-read results of each sample was done
(Supplemntry Tables 6, 7 and 8), following the same pro-
cedure that includes tagging variants in regions described in
the methods section. Table 2 shows the calculated kappa-
coefficients for the three samples.

Table 2 shows calculated kappa values at different levels
of coverage following downsampling. The quadratic
weighted kappa coefficient eliminates any residual chance
of randomness when comparing the two analyses, therefore,
when comparing the mean coverage at different down-
sampling levels for the three samples against the corre-
sponding mean kappa value, we can see that at a mean
coverage of 51 (for the 60% coverage level) the mean kappa
value is 0.946; corresponding to an ‘almost perfect’ inter-
pretation (Supplementary Table 2). Furthermore, the mean

Fig. 1 Circular plotting of genotyped variants and downsampling
genotyping. Results of sample-1 (a, b), sample-2 (c, d) and sample-3
(e, f) are presented for circular plotting of genotyped variants (a, c, e)
and downsampling genotyping results (b, d, f). a, c and e: SNVs:
(black lines) and indels (red) are plotted in relation to the mitochon-
drial genes map. Heteroplasmic short-read variants (blue background)
are shown as short lines, while all long-read variants are homoplasmic
(orange background). Corresponding coverage for short reads (in blue)
is plotted on a circular scale of 6000 reads, while the long reads
coverage (light red) is plotted on a circular scale of 350. b, d, f: The
first plot inside of the genes map represents the full coverage of long-
reads. Each subsequent plot represents the genotyped variants at dif-
ferent levels of downsampling (100, 80, 60, 40, and 20%). Black lines
represent SNVs and red lines represent indels. This figure was plotted
using circus package [36]
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kappa value at mean coverage of 37 (for the 40% coverage
level) is 0.823, which is interpreted as ‘strong’ level of
agreement, indicating that 67.656% of the data are reliably
agreeable and not due to chance.

However, these values widely fluctuate among the three
samples, since each sample has different initial full-
coverage value, and due to other sample-specific values
related to sample preparation or experimental conditions.

Short-read downsampling and its effect on
genotypes variants

To compare the effect of downsampling on short-read data
with that of long-read data, downsampling was done for
each sample at seven different depths of reads, 1000, 500,
100, 50, 30, 20, and 10×. Supplementary Tables 9, 10 and
11 show the allele frequency for each genotyped variant at
different depths of coverage.

Results of the short-read downsampling show three main
findings: (a) despite the dramatic reduction of read-cover-
age, the total number of variants remains highly consistent
(Supplementary Fig. 1); (b) changes in the number of var-
iants occurs mainly within the masked regions, confirming
their liability for being erroneous; and (c) the proportion of
total number of downsampling-associated erroneous var-
iants is comparable to the proportion of total number of
discrepant variants between long- and short-read sequen-
cing, (see Supplementary Tables 3, 4 and 5).

Discussion

When compared to short-read technology, SNV and Indel
genotyping of PacBio’s long-read data is considerably
consistent. However, due to the limitation of resources only
three cases were available, where both long- and short-read
whole-genome sequencing were done, therefore, the total
number of heteroplasmic variants was limited. Never-
theless, the downsampling process could still provide better
understanding of the relationship between the accuracy of

long-read genotyping and other parameters, including depth
of coverage and other possible sample-specific factors like
DNA quality and library preparation. The different, fluctu-
ating kappa values at different coverages for different
samples can be partially explained by the depth of coverage,
as shown in Supplementary Tables 3, 4 and 5. The random
downsampling confirms the following two facts: (1)
Reducing the coverage does not necessarily lead to a cor-
responding reduction in the number of variants. On the
contrary, due to the noise in long reads caused by random
indel errors, the model starts to erroneously call false var-
iants as the reduction goes below coverage of around 37
reads, (2) long-read random errors are responsible for
generating the false variants at low coverage, unlike short-
reads where the removal of fractions of the reads doesn’t
lead to significant increase in false variants. It indicates that,
as expected, the hidden Markov model of the Arrow algo-
rithm requires a certain percentage of reads to accurately
call variants, rather than predominantly rely on the majority
of votes by reads at each position.

Therefore, coverage is very critical for the reliability of
using single-pass long-read data for SNV genotyping.

An attempt to confirm discrepant variants at tagged
regions using Sanger sequencing was unsuccessful, as
described in the “Results” section, due to a combination of
low complexity of genomic sequence at the discrepant sites,
and technical limitations of Sanger sequencing when trying
to confirm regions with variants of low VAFs.

In a study conducted on more than 1500 cases of the
ClinSeq study (NHGRI, USA) by Beck, Biesecker, and
others [35], they concluded that using Sanger sequencing as
the gold standard for confirming NGS variants is not always
a proper thing to do. In that study, over 5800 NGS variants
were analyzed using Sanger sequencer, and in some cases
Sanger sequencing can reject true positive variants instead
of eliminating false positive ones.

Given the high agreement between the long- and short-
read technologies, it indicates that using long-read sequen-
cing for genotyping short variants, in addition to structural
variants, might be a highly cost-effective choice. However,

Table 2 Calculated kappa-coefficient for the three samples at different coverage percentages

% coverage Sample-1 Sample-2 Sample-3 Mean coverage Mean kappa % agreement

coverage kappa coverage kappa coverage kappa

100% 95.688 0.908 95.608 0.980 89.051 0.997 93.449 0.961 92.432

80% 57.290 0.926 73.760 0.977 67.974 0.993 66.342 0.965 93.174

60% 46.452 0.926 60.420 0.974 46.659 0.939 51.177 0.946 89.554

40% 32.057 0.512 40.458 0.976 38.872 0.980 37.129 0.823 67.656

20% 14.611 0.747 30.745 0.447 15.250 0.643 20.202 0.612 37.505

The % coverage indicates the percentage of reads remaining following random downsampling, where 100% is the original coverage data. The
mean coverage and mean kappa are calculated across the three samples
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larger studies, using more samples can provide stronger
evidence for or against these conclusions.

The high consistency of genotyped variants with the
downsampling of short reads demonstrates the expected
robustness and accuracy of short-read data, however, this
does not exclude the possibility of persistent erroneous
genotypes due to systematic errors. The comparable number
of fluctuating erroneous variant numbers with down-
sampling to the total number of discrepant variants between
short- and long-read sequencing, among the three samples,
is possibly due to the effects of DNA quality, regardless to
the sequencing technology.

Finally, although the recent development of HiFi con-
sensus sequences by PacBio can provide more accurate
sequences than the standard subreads, by performing mul-
tiple passes over the DNA segment, HiFi is still costly and
the main scope of this study is to compare single-pass long-
and short-read sequencing data.
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