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Background: Later life metabolic dysfunction is a well-
recognized consequence of being born small for gestational 
age (SGA). This study has applied metabolomics to identify 
whether there are changes in these pathways in prepubertal 
short SGA children and aimed to compare the intracellular and 
extracellular metabolome in fibroblasts derived from healthy 
children and SGA children with postnatal growth impairment.
Methods: Skin fibroblast cell lines were established from 
eight SGA children (age 1.8–10.3 y) with failure of catch-up 
growth and from three healthy control children. Confluent cells 
were incubated in serum-free media and the spent growth 
medium (metabolic footprint), and intracellular metabolome 
(metabolic fingerprint) were analyzed by gas-chromatography 
mass spectrometry.
results: Nineteen metabolites were significantly altered 
between SGA and control cell lines. The greatest fold differ-
ence (FD) was seen for alanine (fingerprint FD, SGA: control 
0.3, P = 0.01 and footprint FD = 0.19, P = 0.01), aspartic acid 
(fingerprint FD = 5.21, P = 0.01), and cystine (footprint FD = 
1.66, P = 0.02). Network analysis of the differentially expressed 
metabolites predicted inhibition of insulin as well as growth 
(ERK) signaling in SGA cells.
conclusion: This study indicates that changes in cellular 
metabolism associated with both growth failure and insulin 
insensitivity are present in prepubertal short children born SGA.

there are approximately 700,000 children born in the United 
Kingdom each year (1). Using a definition of small for gesta-

tional age (SGA) as a birth weight more than 2 SD below mean 
birth weight, there are approximately 16,000 SGA children born 
each year. SGA neonates can broadly be divided into those who 
are constitutionally small (i.e., small in comparison to popula-
tion standards but normal for familial and ethnic background) 
and those with pathological growth impairment (2). Intrauterine 
growth restriction is a term applied to fetuses and neonates with 
an estimated fetal weight or birth weight/length <10th percen-
tile due to pathological growth restriction due to adverse genetic 
or environmental influences (3). Around 10% of children born 

SGA will fail to show catch-up growth over the first 2 y of life, 
leaving approximately 1,600 children in the United Kingdom 
who remain short (height standard deviation score (SDS) <-2) 
at 2 y of age (4). As well as growth impairment children born 
SGA are at increased risk of cardiovascular disease, hyperten-
sion, hyperlipidaemia, and type 2 diabetes in adulthood (5).

The causes of children being born SGA are numerous and 
include maternal, placental, and fetal factors (5). There are a small 
number of monogenic causes for a child to be born SGA and 
experience poor postnatal growth (e.g., 3-M syndrome, Bloom 
syndrome, Microcephalic Osteodysplastic dwarfism type II, 
IGF-IR mutations, Seckel syndrome, and Mulibrey nanism) (6).

Metabolomics provides a number of advantages over single ana-
lyte measurement, for example, high-throughput analytical strate-
gies and the provision of a dynamic and sensitive measure of all 
metabolites that contribute to the phenotype being examined (7). 
In mammals, metabolomics is typically applied in the discovery 
of novel biomarkers of disease (8–11), drug efficacy (12), or toxic-
ity (10), or is used to understand molecular pathophysiological 
mechanisms (12–14). In mammalian systems, metabolites act as 
building blocks for larger molecules (e.g., proteins) and structures 
(e.g., lipids in cell walls) and they act to regulate biochemical pro-
cesses (e.g., allosterism) and as signaling molecules (7). When 
studying cultured mammalian cells and tissues, two separate but 
linked metabolomes can be studied, the intracellular metabolome 
(metabolic fingerprint) and the extracellular metabolome (meta-
bolic footprint). The metabolic fingerprint allows a snapshot of 
cellular metabolism to be obtained while the footprint reflects the 
effects of metabolite uptake and secretion.

This study has used an established ex-vivo skin fibroblast cell 
model as previous work has shown this to be a good model for 
examining growth disorders (15–17). The aim of this study was 
to elucidate potential novel pathophysiological mechanisms 
associated with (i) failure of postnatal catch-up growth in SGA 
children and (ii) the well-recognized predisposition to meta-
bolic morbidity and diabetes in later life in short children born 
SGA (18). A model culture system using ex-vivo skin fibroblast 
cells was applied in this study as previous work has shown this to 
be a good model for examining growth disorders (15–17). While 
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previous studies have examined serum and urine metabolomics 
in SGA/IUGR children (19–21) by utilizing a cell-based model, 
it is possible to gain deeper insight into intracellular metabo-
lism, potentially yielding useful information on the mechanisms 
underlying the growth impairment, and metabolic changes seen 
in these patients.

RESULTS
In the metabolic fingerprint study, 93 unique chromatographic 
peaks (related to 38 unique and identified metabolites) were 
detected in the samples from both control and SGA cells. In 
the metabolic footprint study, 95 unique chromatographic 
peaks were detected in all samples studied; these related to 39 
unique and identified metabolites.

Comparing the metabolome (fingerprint and footprint) of 
all the SGA patient cells (n = 8) to controls (n = 3), 29 meta-
bolic peaks representing 8 unique and identified metabolites in 
the fingerprint and 11 unique and identified metabolites in the 
footprint were statistically significantly up- or downregulated 
(Table 1). The amino acid alanine was downregulated in the SGA 
cell lines in both footprint (fold difference (FD) = 0.33) and fin-
gerprint (FD = 0.19). There were five amino acids upregulated in 
the metabolic fingerprint of the SGA cell lines: threonine, orni-
thine, serine, aspartic acid, and glutamic acid. The only metabo-
lites not classified as amino acids and identified in the fingerprint 
were the carbohydrate fructose, which was upregulated in the 
SGA cell lines (FD = 1.8) and the Krebs cycle intermediary, citric 
acid, which was also upregulated (FD = 1.53). In the metabolic 
footprint data, the amino acids cysteine (FD = 0.32) and phenyl-
alanine (FD = 0.65) were downregulated in SGA cell lines while 
cystine was upregulated (FD = 1.66). Pyruvic acid was upregu-
lated and 2-methyl-3-hydroxybutanoic acid and 3-methylpenta-
noic acid were downregulated in the SGA cell lines.

Subgroup analysis comparing the 3-M syndrome and non-
3-M syndrome patients both to control and to each other also 
identified differences in the metabolomics fingerprint and 
footprint (see Supplementary Tables S1–S3 online). Of the 18 
metabolic peaks identified as differentially regulated between 
control and 3-M patients, only 3 (inositol-1-phosphate, glu-
tamine, and 2-oxopropanoic acid) were not also identified 
as dysregulated in the whole group analysis. There were also 
18 metabolites significantly different between the non-3-M 
patients and controls of which 3 (myo-inositol, lysine, and 
phosphate) were not identified as being dysregulated between 
all patients and controls. There were five metabolic peaks in 
the fingerprint (alanine, aspartic acid, fructose, ornithine, and 
serine) and three in the footprint (3-methylpentanoic acid, 
alanine, and cysteine) significantly different to controls for all 
the patients as well as in both the subgroup analyses of 3-M 
and non 3-M patients. There were 21 different metabolites  
significantly up- or downregulated between the 3-M and 
non-3-M patients (Supplementary Table S3 online) includ-
ing 9 metabolites in the footprint and 11 in the fingerprint.

Metabolic Pathway Enrichment Analysis, using 
MetaboAnalyst (22) was performed by including all unique 
and statistically significant metabolites detected in the meta-
bolic fingerprint and footprint samples when comparing all the 
SGA patient cells to controls. Five metabolic pathways showed 
enrichment with a false discovery rate of q < 0.05 (see Table 2).

table 1. Metabolites up- or downregulated comparing the 
metabolic fingerprint and metabolic footprint from SGA fibroblasts 
to control fibroblasts

Metabolite Ratio P value Source

Alanine 0.33 0.014 Fingerprint

Threonine 1.25 0.041 Fingerprint

Glutamic acid 1.39 0.025 Fingerprint

Ornithine 1.44 0.014 Fingerprint

Citric acid 1.53 0.041 Fingerprint

Serine 1.65 0.014 Fingerprint

Fructose 1.8 0.014 Fingerprint

Aspartic acid 5.21 0.014 Fingerprint

Alanine 0.19 0.014 Footprint

Cysteine 0.32 0.014 Footprint

2-methyl-3-hydroxybutanoic acid 0.53 0.049 Footprint

3-methylpentanoic acid 0.54 0.014 Footprint

Hexanoic acid 0.58 0.041 Footprint

Phenylalalnine 0.65 0.025 Footprint

Aminomalonic acid 0.71 0.041 Footprint

Trimethylamine-N-oxide 1.18 0.025 Footprint

Phosphate 1.26 0.041 Footprint

Pyruvic acid 1.42 0.025 Footprint

Cystine 1.66 0.025 Footprint

SGA fibroblasts (n = 8) and control fibroblasts (n = 3). The fold change is calculated as 
median-SGA/median-control.
SGA, small for gestational age.

table 2. Metabolic pathways enrichment analysis using the metabolic fingerprint and metabolic footprint metabolites identified as significantly 
up-/downregulated between control and small for gestational age cells

Pathway name
Number of metabolites 
statistically significant FDR (q value) Metabolites

Cyanoamino acid metabolism 3 0.0074 Glycine, serine, alanine

Glycine, serine and threonine metabolism 4 0.0093 Threonione, glycine, serine, pyruvate

Alanine, aspartate and glutamate metabolism 3 0.0129 Glutamine, asparate, pyruvate

Methane metabolism 3 0.0291 Trimethylamine-N-oxide, glycine, serine

Nitrogen metabolism 3 0.0362 Phenylalanine, glutamine, glycine
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An interaction network formed from the metabolites iden-

tified as differentially regulated between all SGA patient and 
control cell lines contained PI3K, AKT, p38, and ERK in addi-
tion to molecules in the proinsulin-insulin pathway (Figure 1). 
This interaction network predicts inhibition insulin activity. 
Biological functions associated with the differentially regu-
lated metabolites included carbohydrate metabolism, cell-cell 
signaling, cell growth and cell cycle (see Figure 2).

The identification of these protein kinases in the network led 
us to validate their involvement by examining the activation of 
kinases in response to IGF-I using a phospho-kinase array in 
the cell lines. Treatment with IGF-I led to a significant change 
(P < 0.05) in phosphorylation of nine proteins in control cells 
(ERK1, ERK2, JNK1, JNK2, pan JNK, p38, RSK2, pan AKT, 
and MSK2) and seven proteins in the SGA cells (ERK1, JNK1, 
p38, RSK1, RSK2, AKT2, and MSK2) (see Figure  3). These 
data imply that in control but not in SGA cells IGF-I preferen-
tially activates ERK2 and JNK2 while, in SGA but not controls, 

IGF-I preferentially activates RSK1. Both ERK2 and JNK are 
contained within the interaction network formed from the dif-
ferentially regulated metabolites (Figure 1) and are linked via 
glutamic acid.

DISCUSSION
The primary aim of this study was to identify metabolomic 
changes in fibroblasts from children with a severe SGA/growth 
impairment syndrome and to identify pathogenic mecha-
nisms linking these metabolomic changes to short stature and/
or early markers of metabolic disease. There are limited data 
available on metabolomic changes in SGA children: one study 
identified changes in the metabolome in media conditioned by 
placental explants from pregnancies complicated by SGA (23). 
Seventy-nine metabolites were altered including aconitate, 
lithospermic acid, tryptophan, and oxoproline. Alterations 
of multiple metabolites, including amino acids, lipids, and 
myo-inositol, have been identified in the serum of piglets with 

Figure 1. Interaction network of differences in metabolite regulation between control and small for gestational age patient cell lines. Nineteen 
 metabolites were identified as differentially regulated between control and patient cells; these were used to define a network with inferred protein and 
metabolite interactions (Ingenuity Pathway Analysis Software (IPA)). Predicted activity in the network was calculated by derivation from the findings 
within the Ingenuity Knowledge Base database between the unknown molecule and its known neighbors (Molecule Activity Predictor in IPA). Purple 
highlight indicates involvement with insulin signaling (13/44). Red = predicted to be upregulated with darker red indicating greater upregulation. 
Green = predicted downregulated with darker green indicating greater downregulation. Orange = predicted activation with darker orange indicating 
greater activation. Blue = predicted inhibition with darker blue indicating greater inhibition.

Figure 2. Biological functions associated with differences in metabolite regulation between control and small for gestational age patient cell lines. 
Biological functions ranked by P value of Fisher’s exact test (negative log).
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intrauterine growth restriction (24). Dessì et al. (20) studied the 
urinary metabolome in intrauterine growth restricted (IUGR) 
and normal weight newborns and identified differences in the 
concentrations of myo-inositol and creatinine (both upregu-
lated). An increase in myo-inositol was demonstrated in a 
second cohort of IUGR infants as well as in large for gesta-
tional age infants (19,25). The IUGR infants from the studies 
of Dessì et al used a definition of weight at birth <10th centile 
and so may have included in the IUGR group newborns who 
would be classed as normal based on a definition of SGA being 
a weight SDS <−2. Another study compared the metabolome 
from cord blood samples of SGA and AGA infants and iden-
tified increases in the amino acids proline, valine, isoleucine, 
glutamate, phenylalanine, and tryptophan  (26). Work from 
our own laboratory studying the serum and urine metabo-
lome of 33 SGA children (all age >4 y, 22 catch up and 11 non-
catch-up) identified significant differences in myo-inositol (in 
urine), decanoic acid (in serum), glutamine (in serum), uric 
acid (in urine), and carnitine (in urine) (21). The most con-
sistently identified metabolite altered in SGA/IUGR appears 
to be myo-inositol. With the exception of phenylalanine, the 
metabolites identified as being altered in SGA in this study are 
different to those identified in other studies, which represents 
the differences in examining biofluids (urine or serum) com-
pared to the cellular metabolome.

A cell model was chosen for this study in order to allow 
examination of a snapshot of the intracellular metabolism as 
previous studies have focused on serum, urine, and condi-
tioned media (all of which provide information on longer-term 
metabolic uptake and secretion). Fibroblasts were chosen as 
they have previously been shown to be a good model for study-
ing growth disorders (15–17) and are easy to obtain via a skin 
biopsy. For studying the effects of being SGA on glucose, fat, or 

lipid metabolism, it may be better to dedifferentiate the fibro-
blasts into induced pluripotent stem cells and then redifferen-
tiate the stem cells into adipocytes or hepatocytes. The growth 
and metabolic changes seen in short children born SGA rep-
resent long-term modifications to cellular processes. Studying 
a cultured fibroblast cell line rather than tissue avoided the 
possibility of local factors at the time of biopsy (e.g., trauma) 
influencing results.

In this study, there were decreases in 2-methyl-3-hydroxy-
butanoic acid and 3-methylpentanoic acid, which are both 
organic acids generated by isoleucine metabolism. Isoleucine 
is one of the three branched chain amino acids and increases 
in levels of the branched chain amino acids are linked to obe-
sity and insulin resistance (27). A second observation was 
related to the depletion of the intracellular alanine pool either 
as a result of increased production of aspartic acid, glutamic 
acid, and ornithine or as a result of reduced conversion of 
pyruvate to alanine via alanine transferase. Alanine was pres-
ent at a fourfold lower concentration in SGA subjects while 
aspartic acid was present at a fourfold higher concentration 
in the metabolic fingerprint and pyruvate at 1.4-fold higher 
concentration. Ornithine and glutamic acid, both products 
of alanine catabolism, were present at 1.4-fold higher concen-
trations in SGA subjects in the metabolic fingerprint. Thus, 
there is evidence for both reduced production and increased 
catabolism of alanine. Abnormalities in alanine and branched 
chain amino acids have been linked to cardiovascular disease 
as a rise in these metabolites is found in populations in China 
where there are increased rates of cardiovascular disease and 
obesity (28). Alterations in the levels of alanine, threonine, and 
the branched chain amino acids have also been found in infants 
born with weight of less than 1,500 g (this study included pre-
mature infants, hence not all infants will have been SGA) (29).

Biological network analysis of the footprint and fingerprint 
metabolomic data obtained in this study identified a network 
involving insulin and PI3K, ERK, and AKT. The biological 
functions significantly associated with the differentially regu-
lated metabolites included cell growth, cell cycle, and carbo-
hydrate metabolism. PI3K, ERK, and AKT are involved in the 
signal transduction pathways of both insulin and IGF-I recep-
tors. Alterations in signal transduction of IGF-I and insulin are 
a plausible mechanism to cause both the growth and metabolic 
effects seen in SGA children. Increased activity within growth-
related pathways has previously been associated with short 
stature disorders such as Noonan syndrome (30), while inhibi-
tion of insulin signaling is seen in Donohue syndrome, also 
associated with growth restriction (31). This study therefore 
strengthens the suggestion that the cellular metabolic path-
ways involved in glucose regulation and growth are altered in 
SGA children. The phospho-kinase array identified differences 
between the control and SGA cell lines in the activation of 
growth-related signaling pathways and these were represented 
in the network analysis (ERK, JNK2, and RSK2).

This study has identified multiple metabolomic changes 
in fibroblasts from SGA children. Horgan et al. (32) identi-
fied a serum metabolomic profile in early pregnancy, which 

Figure 3. Phospho-kinase activation after stimulation with IGF-I in control 
and small for gestational age (SGA) patient cells. In control but not SGA 
cells, IGF-I preferentially activates ERK2 and JNK2 while in SGA but not 
control cells RSK2 is activated. *P > 0.05 for difference between the IGF-I 
stimulated phospho-kinase activation (shown on graph) and baseline 
phospho-kinase activity (not shown). Black bars = SGA; gray bars = control.
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was predictive of the child being born SGA. Further work is 
required to determine if any of these metabolomic changes 
can be used either in utero or during the first few months of 
life to predict subsequent growth and metabolic health in SGA 
children. The limitations of the study include the small num-
ber of subjects and the use of GC-MS only. The application 
of liquid-chromatography-mass spectrometry would increase 
the coverage of metabolites detected. Evidence is presented 
for changes in growth and glucose metabolism pathways in 
skin fibroblast cell lines derived from SGA children. Further 
extensive studies are required to identify whether changes in 
the metabolome may correlate with growth phenotype, for 
instance, differentiating those SGA children who are destined 
either to experience inadequate catch-up growth, full catch-
up, or even excessive weight gain. In particular, future studies 
should focus on expanding this work into the clinical arena 
with prospective studies in babies born SGA.

In conclusion, we have identified intracellular metabolomic 
changes linked in network analysis to reduced insulin and 
IGF-I signal transduction in fibroblasts derived from short 
children born SGA.

METHODS
Patients
Patients were recruited from the regional Growth Clinic at the 
Royal Manchester Children’s Hospital. They were eligible for inclu-
sion where they were born SGA (birth weight SDS ≤−2 SD) and had 
either failure of catch-up growth with height SDS ≤−2 at >2 y of age 
or an identified genetic mutation associated with absence of catch-up 
growth. Seven patients were recruited on the basis of a height <−2 
SD at >2 y of age with the remaining child recruited at 1.8 y of age 
displaying no evidence of catch-up growth and having a CUL7 muta-
tion, which is associated with absence of postnatal catch-up. All of 
our patients therefore had pathological growth impairment demon-
strated by genetic mutations associated with growth failure (n = 5), 
evidence on intrauterine growth restriction on antenatal ultrasound 
(n = 5), and postnatal growth impairment (n = 8). Skin fibroblast 
cell lines were derived from three SGA patients with no defined eti-
ology, one patient with Russell Silver syndrome (11p15 hypometh-
ylation), four 3-M syndrome patients, and three control subjects. 
Including those with a defined as well as undefined etiology allowed 
us to assess whether their metabolome overall gives any indication 
of general growth and metabolic disorders in childhood. Biopsies 
were obtained from the forearm after application of EMLA cream 
(AstraZeneca, Macclesfield, UK). The 3-M patients included one male 
with a homozygous CUL7 mutation (c.4191delC p.H1379HfsX11), 
one male and one female (siblings) with a homozygous OBSL1 muta-
tion (c.1273insA, p.T425NfsX40), and one female with a homozygous 
CCDC8 mutation (c.84dup, p.L29X). All children had exhibited sig-
nificant failure of postnatal growth (see Table 3). The three control 
fibroblast cell lines (two male aged 4 and 9 y, one female aged 7 y) 
were derived from skin obtained during removal of skin tags from 
healthy normal statured children and was provided by the University 
of Manchester Centre for Genomic Medicine. All patients and control 
subjects were prepubertal at the time the skin samples were obtained.

Informed consent was obtained from parents, and the study was 
approved by the Central Manchester Research Ethics Committee (07/
Q1402/67 and 08/H1008/39) (North West Centre for Research Ethics 
Committees, Manchester, UK).

Cell Culture
Fibroblast cells were cultured in Dulbecco’s modified Eagles medium 
(Invitrogen, Paisley, UK) supplemented to a final concentration with 
10% fetal bovine serum (Invitrogen), 50 units/ml penicillin, 50 μg/
ml streptomycin, 2 mmol/l glutamine and 2.5 μg/ml amphoterocin B ta
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(Invitrogen). Confluent cells passage eight were switched to serum-
free media 24 h prior to sampling for metabolomics analysis.

Metabolic Footprint Collection and Preparation
Culture medium (defined as the metabolic footprint) was removed by 
aspiration and immediately stored at −80 °C. Samples were prepared 
for analysis by lyophilizing 200 µl aliquots (HETO VR MAXI vacuum 
centrifuge attached to a HETO CT/DW 60E cooling trap; Thermo 
Life Sciences, Basingstoke, UK).

Metabolic Fingerprint Collection and Preparation
Immediately following the removal of the metabolic footprint sample, 
the cells were rapidly washed twice with 5 ml ice-cold phosphate-
buffered saline to remove media contaminants. A quenching solution 
(80% methanol in water, −40 °C) was immediately added to the cells 
to suppress metabolism. The cells were released by scraping and the 
resulting suspension was subjected to three freeze/thaw cycles, using 
liquid nitrogen, to disrupt cell membranes and release the intracellu-
lar metabolome to the solution (defined as the metabolic fingerprint). 
The extraction solution was separated from the cellular biomass by 
centrifugation (2,500 g for 5 min). Aliquots (1.5 ml) were lyophilized 
and then stored at −80 °C prior to further analysis.

Gas Chromatography-Mass Spectrometry
Lyophilized samples (a total of 66 footprint samples and 66 fin-
gerprint samples) were chemically derivatised by addition of an 
O-methylhydroxylamine solution (50 µl, 20 mg.ml−1 in pyridine 60 °C 
for 30 min) (Sigma-Aldrich, Gillingham, UK); followed by addition of 
50 µl MSTFA (N-acetyl-N-(trimethylsilyl)-trifluoroacetamide) (Sigma-
Aldrich) and heating at 60 °C for 30 min. 20 µl of a retention index solu-
tion (0.6 mg ml−1 C10, C12, C15, C19, and C22 n-alkanes) was added to the 
derivatised solution. Particulate matter was removed by centrifugation 
(15 min, 13,3639 g) followed by transfer of the supernatant to 300 µl 
glass inserts placed in 2 ml chromatography vials that were sealed with 
a polytetraflouroethylene/rubber septum containing screw cap.

Derivatized samples were analyzed on a 6890 gas chromatograph 
and 7890 autosampler (Agilent Technologies, Cheadle, UK) coupled 
to a Pegasus III electron impact mass spectrometer (Leco, Stockport, 
UK) as previously described (33).

Raw data files (.peg format) acquired from the GC–ToF–MS plat-
form were directly processed by applying the ChromaTof v 2.25 
software (Leco Corp, St Joseph, MI) as previously described (34). 
Data for each sample set (metabolic fingerprint and metabolic foot-
print) were integrated as a single dataset in.xls format for further 
data processing and analysis. Median values were calculated for data 
acquired for six technical replicates related to a single subject. All 
data were normalized to the total peak area ((peak area-metabolite/
total peak area-all metabolites)*100). Metabolites were identified by 
comparison of retention index and electron impact-derived frag-
mentation mass spectrum to an in-house mass spectral library (35) 
or by comparison of the mass spectrum to the Golm Metabolome 
Database (36) or NIST08 mass spectral library (http://www.nist.
gov/srd/nist1a.cfm). Four different levels of reporting metabo-
lite annotation or identification are available, as defined by The 
Metabolomics Standards Initiative (37). Level 1 identification was 
achieved if matching of RI and mass spectrum to a metabolite in the 
in-house library was achieved. Level 2 identification was achieved 
by matching to a metabolite present in Golm Metabolome Database 
or NIST08 libraries by mass spectrum only.

Statistical Analysis
Univariate statistical analysis was performed, using the nonparamet-
ric Mann-Whitney U-test to determine those metabolites showing 
a statistically significant difference (P value < 0.05) between classes 
under observation.

Analysis of Associated Biological Function
Metabolic pathway enrichment analysis was performed using the 
MetaboAnalyst software (22,38). All metabolites identified as statisti-
cally significant in metabolic footprint or metabolic fingerprint data 
were included. The Homo sapiens pathway was applied as well as the 
hypergeometric test (for over-representation analysis) and relative-
betweeness centrality (for pathway topology analysis).

Network analysis of metabolomic data was performed to associ-
ate differences in metabolites between SGA and normal cells with all 
known metabolite and protein interactions, and hence, assess func-
tional relevance. The Pubchem identifier of associated metabolites 
was mapped to its corresponding object in Ingenuity’s Knowledge 
Base (Qiagen, Redwood City, CA). These molecules, called Network 
Eligible molecules, were overlaid onto a global molecular network 
developed from information contained in Ingenuity’s Knowledge 
Base. Interaction Networks were then generated based on the func-
tion of these molecules using the ingenuity pathways analysis soft-
ware algorithm. Network data was exported from ingenuity pathways 
analysis into Cytoscape 3.2.1 with edge bundling (39–42).

Phospho-kinase Array
Cells were serum starved for 24 h and then treated with or with-
out IGF-I (100 ng/ml) (R&D Systems, Abingdon, UK) for 15 min. 
Lysates (a pool of four independent experiments) were applied to 
a human phospho Mitogen Activated Protein Kinase array (R&D 
systems, Abingdon, UK) in accordance with the manufacturer’s pro-
tocol. Densitometry was assessed with imageJ (NIH, Bethesda, MD) 
(43). Three control cell lines and three SGA cell lines were examined 
(not including RSS or 3-M syndrome).

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at http://
www.nature.com/pr
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