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The benefits of antenatal glucocorticoids are now firmly estab-
lished in the perinatal management of threatened preterm 
birth. Postnatal glucocorticoid therapy, however, remains 
controversial in neonatal medicine, with the need to bal-
ance short-term physiological benefits against the potential 
for long-term adverse consequences. This review focuses on 
the vascular effects of prenatal and postnatal glucocorticoids, 
synthesizing data from both experimental animal models and 
human infants with the goal of better appreciation of the short 
and long-term effects of these commonly used drugs. Due to 
their widespread and varied use, improved understanding of 
the cellular and molecular impact of glucocorticoids is impor-
tant in guiding current practice and future research.

Glucocorticoids play an important role in perinatal and 
neonatal medicine. Clinical benefits associated with gluco-

corticoids include, but are not limited to, antenatal administra-
tion for lung, brain and gastrointestinal protection of preterm 
infants, and postnatal use in ventilator dependence and pres-
sor-resistant hypotension. The precise mechanisms underlying 
the beneficial effects of perinatal glucocorticoids have not yet 
been clarified. The genomic actions of glucocorticoids occur 
via binding to the glucocorticoid receptor, a member of the 
nuclear receptor family of ligand-dependent transcription fac-
tors (1). After activation by its ligand, the receptor can act as 
a transcription factor and alter the expression of specific tar-
get genes. Whether specific actions of glucocorticoids occur 
via this mechanism or via other nongenomic effects is unclear 
given the variety of uses and lack of mechanistic studies in spe-
cific disease models. What is clear, however, is that from adult 
neurologic and cardiovascular disorders to chronic glucocorti-
coid-induced hypertension, steroids have a significant impact 
on the human vascular system (1–3).

MECHANISMS OF ACTION
The effects of glucocorticoids on vascular health and dys-
function may be mediated in part by activation of endothe-
lial nitric oxide synthase (eNOS). Dysfunction of eNOS or its 
downstream signaling targets has been implicated in many 
disease states. Endothelial NOS catalyzes the formation of NO 
and citrulline from the nitrogens of L-arginine via a complex 

oxidation-reduction reaction, requiring molecular oxygen and 
NADPH plus numerous cofactors (flavin adenine dinucleotide 
(FAD), Flavin mononucleotide (FMN), heme, and tetrahydro-
biopterin), as well as the activator calmodulin (4). Nitric oxide 
diffuses extracellularly to bind with soluble guanylyl cyclase 
in neighboring smooth muscle cells to increase cyclic GMP 
concentrations. Cyclic GMP activates G kinase and decreases 
smooth muscle cell intracellular calcium levels, eliciting relax-
ation in most conductance vessels. Activation of eNOS and 
release of NO have been shown to play important roles in nor-
mal neonatal circulatory transition; however the role of NO 
in various neonatal disease states, such as bronchopulmonary 
dysplasia (BPD), chronic pulmonary hypertension associated 
with BPD, neonatal sepsis, and necrotizing enterocolitis, are 
not much well understood (5). How the vascular processes 
involved in these physiologic and pathologic states may be 
influenced by steroid administration is incompletely under-
stood, but is important that given the protection conferred by 
antenatal steroids and the clinical effects of postnatal steroids.

Vascular responses are known to be influenced by eNOS 
expression and activity. Antenatal dexamethasone (DEX) treat-
ment increases eNOS expression in large vessel  endothelium 
and large airway and small airway epithelium of fetal rat lungs 
(6). In rat models of congenital diaphragmatic hernia in which 
eNOS protein levels in the lung are decreased, maternal ante-
natal DEX administration results in offspring lung tissue that 
contained eNOS protein amounts equal to that of control, 
noncongenital diaphragmatic hernia animals (7). Antenatal 
betamethasone (BMZ) stimulates an increase in eNOS protein 
levels in lambs born with pulmonary hypertension induced 
by fetal ductal ligation (8). Similarly, repeat doses of  antenatal 
BMZ increased total amounts of eNOS protein in the lung of 
newborn lambs (9). Of note, steroids also decrease baseline 
values of IL6 and reactive oxidative species suggesting other 
mechanisms may contribute to improved pulmonary  outcomes 
following antenatal BMZ (10). Thus, through its effect on 
 pulmonary vascular physiology, biochemistry and molecular 
signaling, antenatal steroids improve the pulmonary transition 
and adaptation at birth in a number of animal models.

Given the pivotal role of eNOS in vascular homeostasis, it 
is also important to consider the impact of steroids on eNOS 
cofactors that have been implicated in disease processes 
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of vascular dysfunction. Tetrahydrobiopterin (BH4) is one 
such cofactor or stabilizer of eNOS , which is altered by 
corticosteroid administration. In adult rats, glucocorticoids 
downregulate guanosine triphosphate cyclohydrolase, the 
generator of tetrahydrobiopterin, causing attenuation of 
eNOS-dependent regulation of vascular contractility (11). 
Glucocorticoids are known to interact with Hsp90, a molec-
ular chaperone required for eNOS phosphorylation and 
coupled eNOS activity (12). In a lamb model of pulmonary 
hypertension, antenatal BMZ restored Hsp90 interactions 
with eNOS in hypertensive pulmonary artery endothelial 
cells and corrected the increase in superoxide levels and 
decrease in NO bioavailability, resulting in decreased oxi-
dative stress in pulmonary artery endothelial cells and 
improved eNOS protein expression (8). Steroids may affect 
other eNOS cofactors implicated in dysregulation of vascu-
lar tone such as caveolin-1 and calmodulin, however their 
contribution requires further study (13).

Synthetic glucocorticoids, specifically DEX and BMZ, cross 
the placenta without degradation by 11 beta-hydroxysteroid 
dehydrogenase and reach significant pharmacological levels 
in the fetus, in the range of 30–50% of the maternal levels (14). 
The mechanisms underlying the clinical benefits of antenatal 
corticosteroids may, at least in part, be related to their effects 
on the fetal vasculature. The vascular effects of steroids are 
described below according to their pre and postnatal uses, 
with separate consideration of the pulmonary and systemic 
vascular effects of various steroid preparations and dosing 
regimens.

ANTENATAL VASCULAR EFFECTS
Antenatal steroids have been shown to have many beneficial 
effects on the fetus. In multiple randomized controlled tri-
als and meta-analyses, maternal administration of a single 
course of antenatal corticosteroids, commonly BMZ or DEX, 
is associated with an overall reduction in neonatal death and 
morbidity, including respiratory distress syndrome, intraven-
tricular hemorrhage, NEC, and neonatal intensive care unit 
admissions (15,16). Routine clinical use of antenatal glucocor-
ticoids has previously been limited to mothers with threatened 
or impending preterm birth between 24 and 34 wk of gestation 
(17). However, infants born between 18 and 23 wk gestation 
may also benefit from antenatal corticosteroids with decreased 
mortality and improved neurodevelopmental outcomes (18). 
More recently, it has been demonstrated that antenatal BMZ 
treatment decreases respiratory morbidity and NICU admis-
sion rates among late preterm infants born between 34 and 
36 wk of gestation (19). Glucocorticoids may have maximal 
effect during a critical window of development, an important 
area for future research.

Infants with congenital pulmonary abnormalities may also 
benefit from antenatal BMZ (20). Studies on the potential 
advantages of antenatal glucocorticoid in other clinical sce-
narios including fetuses with antenatally diagnosed congenital 
diaphragmatic hernia (20) and fetuses of diabetic mothers at or 
near term are needed.

Pulmonary Effects of Antenatal Steroids
Prenatal glucocorticoids have significant maturational effects 
on the developing fetal lung, which include enhanced alveolar 
differentiation, thinning of alveolar septae and capillary walls, 
and upregulation of surfactant production (21,22). In fetal rat 
and lamb models of pulmonary development, antenatal gluco-
corticoids enhance normal development with increased anti-
oxidant activity and decreased formation of reactive oxygen 
species (6,7). In a premature lamb model of lipopolysaccharide 
induced chorioamnionitis, antenatal steroids provide partial 
recovery of lung structure via the sonic hedgehog pathway 
(23).

Antenatal corticosteroids enhance fetal pulmonary adap-
tation at birth, although the mechanism is unclear. In a late 
gestation lamb model, fetal pulmonary vascular reactivity 
is increased by antenatal corticosteroid administration in 
response to vasodilatory stimuli, such as catecholamines, pros-
taglandins, and NO (24). In a preterm lamb model, antena-
tal corticosteroids specifically enhance fetal pulmonary blood 
flow, an effect that does not persist after birth (25). In near-
term lambs with hypoplastic lungs, antenatal steroids return 
pulmonary blood flow to control levels, restoring the impaired 
perinatal adaptation of the pulmonary circulation in this 
model (26). Analysis of Doppler indices in extremely prema-
ture human fetuses following maternal BMZ administration 
suggests decreased pulmonary vascular resistance (27). Thus, 
the effect of antenatal corticosteroids on pulmonary blood 
flow may vary based on gestation and perinatal cardiopulmo-
nary physiology.

Systemic Effects of Antenatal Steroids
Within days of maternal steroid administration, changes 
are observed in human fetal hemodynamics (28,29). 
Corticosteroids dilate the human umbilical circulation both 
in vivo and in vitro and may blunt fetal response to hypoxia 
(30,31). Corticosteroids increase fetal systemic blood pres-
sure while cerebral blood flow is decreased due to increased 
cerebral vascular resistance (25). In clinical practice, fewer 
extremely premature infants who receive antenatal steroids 
require blood pressure support after birth (32).

The effects of antenatal corticosteroids on central nervous 
system development are complex. Among appropriate for 
gestational age premature infants, antenatal corticosteroid 
use is associated with advanced cortical maturation as mea-
sured by diffusion tensor imaging at term equivalent age 
(33). Normally grown, preterm lamb fetuses exhibit transient 
decreases in carotid flow after maternal antenatal BMZ but 
Intrauterine growth retardation (IUGR) fetuses and those 
who have experienced a hypoxic insult have exaggerated cere-
bral reperfusion which correlates with immunohistochemical 
evidence of oxidative stress and cerebral apoptosis in the fetal 
brain (34,35).

While these effects may arise from direct damage to neurons, 
altered cerebrovascular regulation may also be a contributing 
factor (36,37). In humans, both BMZ and DEX have been impli-
cated in disturbances in fetal middle cerebral artery (MCA) 
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flow after single course maternal antenatal steroid administra-
tion (38,39). Transient reductions in MCA flow after maternal 
glucocorticoid administration have been reported in normal 
human fetuses; prolonged reductions in MCA blood flow have 
been reported in fetuses <32 wk of gestation and in the IUGR 
fetus (38,40–42). A majority of IUGR fetuses (from one-half 
to two-thirds) transiently respond within 24–96 h to antenatal 
BMZ as evidenced by reversal of absent end-diastolic flow in 
the uterine artery (43). However, a subset of severely affected 
infants show no change in umbilical artery or MCA pulsatility 
in response to BMZ, and may be at heightened perinatal risk 
with longer duration of assisted ventilation and supplemental 
oxygen (44,45).

Long-term assessments of neurodevelopmental outcomes 
following antenatal exposure to glucocorticoids in humans 
are lacking in this population of fetuses with severe IUGR. 
Although meta-analyses report less overall risk of IVH with 
antenatal steroids; concern has been raised whether this high-
risk population should receive antenatal steroids; given the 
lack of difference in morbidity and mortality between IUGR 
fetuses that receive antenatal steroids vs. those that do not; and 
the differential responses of umbilical and cerebral blood flow 
parameters between IUGR fetuses and those with appropriate 
intrauterine growth (46,47). In preterm fetuses without growth 
restriction, there are also reports of an increased risk of neuro-
developmental disability associated with antenatal DEX com-
pared with antenatal BMZ (48).

Antenatal steroid use has been associated with multiorgan 
vascular effects, which may not manifest until adulthood. For 
example, antenatal steroid administration improves urinary 
output in the newborn (49,50). In the kidney, renal blood flow 
in newborn preterm lambs is improved after single course 
antenatal BMZ but long-term assessment of these animals 
reveals an association between antenatal steroid exposure and 
hypertension and altered renal development in adult life that 
may be gender-specific (51–53). The adult cerebral circula-
tion of prenatally-exposed sheep to clinically relevant doses 
of antenatal BMZ exhibits attenuation of pressure-induced 
vasoconstriction and altered vessel reactivity (54). Fetal pro-
gramming upon exposure to high dose antenatal (or postnatal) 
corticosteroids undoubtedly influences the long-term impact 
of corticosteroids on the developing vascular system and is an 
important area for further animal and human research.

Human and animal studies using multiple courses of ante-
natal steroids show that repeated exposure can adversely affect 
multiple organ systems. Repeated antenatal steroid doses may 
reduce the severity and frequency of neonatal lung disease in 
humans but has been associated with decreased fetal growth in 
some studies (55,56). In lambs, repeat maternal doses of ante-
natal BMZ cause growth retardation, whereas in utero fetal 
administration of repeat doses does not alter growth but also 
demonstrates less improvement in postnatal lung function, 
suggesting a specific role for maternal metabolism of gluco-
corticoids in mediating its beneficial effects on the fetus (57). 
Repeated doses of antenatal BMZ are associated with transient 
increases in cardiac wall mass at birth though single courses 

are not (55,58). In the follow-ups between 6 and 8 y of age, 
there was no difference in cardiovascular risk factors between 
those who received a single antenatal course of BMZ compared 
with multiple courses of BMZ (59). Repeated doses of antena-
tal steroids do not appear to change significantly survival free 
of major neurologic disability or BMI at 24-month follow-up, 
although a nonsignificant trend toward more cerebral palsy 
continues to suggest the need for caution and further research 
(60,61).

A summary of the vascular effects of antenatal glucocor-
ticoid administration in human and animal research can be 
found in Table 1.

POSTNATAL VASCULAR EFFECTS
In vitro experiments in vascular cells and tissues display a 
dose-dependent response to steroids across multiple experi-
mental endpoints. DEX increases human endothelial cell pro-
liferation and migration and is associated with increased eNOS 
phosphorylation and cyclic GMP levels after 2–4 h of exposure 
(62). Similar results following acute glucocorticoid exposure 
have been reported in endothelial cells isolated from multiple 
species and vascular beds (1,3,62). The common denominator 
in this effect is the high- dose and short duration of exposure 
(<36 h) to corticosteroid. Whether the effect is associated with 
altered eNOS protein amount, mRNA, or nitric oxide produc-
tion, this effect is not sustained with long-term corticosteroid 
treatment, even when a 10-fold increase in steroid dose is used 
chronically (63). A glucocorticoid responsive element (GRE) 
has been reported for eNOS in human umbilical vein endo-
thelial cells and may help to explain the corticosteroid effects 
on vascular cells (64). Local tissue metabolism of steroids must 
also be considered when interpreting vascular responses to 
glucocorticoids. Steroid dehydrogenases, which regenerate 
and deactivate bioactive forms of endogenous steroids, have 
been reported to play significant and distinct roles in modulat-
ing the effect of glucocorticoids on eNOS (64).

Table 1. Summary of the antenatal effects of glucocorticoids

Animal Organ system
In utero 
vascular effect References

Human Cardiovascular

Ductus venosus No change (41,50)

Descending aorta No change (27)

Lung Pulmonary artery Increased flow (39)

Umbilical artery Increased flow (52)

Brain No change (27,41,50,52)

MCA Decreased flow (45,46)

Other cerebral artery 
or internal carotid

No change (41)

Lamb Cardiovascular SVR Increased flow (31,51)

Renal artery Increased flow (36)

Brain Decreased flow (36,52)

Lung Increased flow (26,36)

MCa, middle cerebral artery; sVR, systemic vascular resistance.
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Pulmonary Effects of Postnatal Steroids
To the neonatologist, the lung is the first litmus test of suc-
cessful adaptation to extra uterine life. Robust data suggest 
that steroids have beneficial effects on this organ. The clini-
cal impact of postnatal corticosteroids on lung function is 
well-recognized. Postnatal steroids (primarily DEX) improve 
the likelihood of successful extubation and decrease the inci-
dence and severity of chronic lung disease. Some of the early 
meta-analyses on follow-up data of infants receiving postna-
tal steroids for chronic lung disease treatment or prevention 
presented concerning evidence of increased cerebral palsy and 
poorer neurodevelopmental performance in infants exposed 
to postnatal steroids. However, more recent reports of low 
dose postnatal steroids that were started after the first week 
of life fail to demonstrate adverse effects or benefits at longer 
follow-up durations (65,66). The potential benefits of postnatal 
steroids have generally been reserved for the infant at highest 
risk of pulmonary mortality.

Postnatal steroids seem to offer some protective advantages 
in animal models of lung inflammation or disease. Adult rab-
bits chronically exposed to DEX (3–4 d) are protected from 
the detrimental effects of chronic hypoxia in a model of pul-
monary hypertension. DEX treatment prevents the hypoxia-
induced decreases in phosphorylation of both eNOS and Akt, 
a protein kinase that phosphorylates serine 1,177 residues con-
tributing to eNOS activation. In organ-cultured pulmonary 
arteries of adult rabbits, DEX recovered eNOS mRNA expres-
sion and maintained eNOS distribution similar to normoxic 
controls in hypoxia-induced pulmonary hypertension (13).

Systemic Effects of Postnatal Steroids
The acute actions of corticosteroids on the systemic circu-
lation appear to have biologic and clinical relevance. Acute 
effects of eNOS activation are evident in adult disease states 
and are modulated by high-dose and brief exposure to cor-
ticosteroids, effects that are not transcriptionally mediated. 
Specifically, in adult mouse stroke models, eNOS is involved 
in the neuroprotective effect of steroids. Endothelial NOS 
mRNA and protein levels do not acutely change, yet NO gen-
eration from eNOS is increased and stroke size is reduced. 
These rapid, nontranscriptional effects are dose-dependent, 
exclusive to glucocorticoid receptor activation and are not 
estrogen or mineralocorticoid receptor-responsive (1). 
Similarly, in models of myocardial infarction, glucocorticoid-
mediated reduction in infarction size is not seen in eNOS null 
mice and is evident only under conditions of high-dose and 
short-exposure times (3).

In the clinical setting, steroids are used to augment blood 
pressure, particularly in vasopressor-resistant hypotension 
(67). Animal models of Cushing syndrome have been used to 
study the interaction of steroids and blood pressure. Results 
suggest that these effects are exposure time-dependent. Animal 
studies show that eNOS is down-regulated at a transcriptional 
and functional level under chronic glucocorticoid adminis-
tration (63,68). In these mice models, the decrease in eNOS 
mRNA and protein in the liver and kidney (with no significant 

decrease in the heart), correlates with lower tissue amounts 
of nitrite generation. These studies suggest that proper eNOS 
function is an important contributor to blood pressure main-
tenance. Acute, high-dose, short-duration corticosteroids 
have beneficial effects in ischemic disease states while chronic 
administration (unrelated to dosage) down regulates eNOS.

Corticosteroids also reduce vascular resistance and increase 
blood flow in the kidney, heart, and eye (69,70). These effects 
are thought to be mediated via endothelial-dependent path-
ways involving vasodilator mediators, including prostaglan-
din E2 and NO. In adult rats, seven-day treatment with DEX 
(to prevent cyclosporine-induced nephropathy) produces a 
marked vasodilatory effect and is associated with increased 
eNOS (71). Short-term postnatal DEX causes decreased glo-
merular number and function in adult rats by limiting cell 
longevity through increased apoptosis (72). In infants treated 
with postnatal corticosteroids increased retinal blood flow has 
been noted (73). A subset of neonatal rats exposed to DEX has 
increased rates of systolic dysfunction as adults (74). However, 
in humans, a six-week tapering course of postnatal DEX was 
not associated with altered systolic blood pressure or BMI at 
school-age follow-up (75).

While the short-term benefits of postnatal steroids on sys-
temic blood pressure in hypotensive neonates were immedi-
ately appreciated from clinical experience, the longer-term, 
neurologic detrimental effects, particularly of prolonged 
courses of steroids initiated in the first week of life, took longer 
to be recognized (12,76,77). While there are short-term ben-
efits in several organ systems, the long-term effects of antenatal 
and postnatal glucocorticoids have yet to be fully elucidated. 
Table 2 provides a summary of the vascular effects of postna-
tal glucocorticoids with a breakdown by species, postnatal age, 
steroid type and organ system.

Table 2. Summary table of the vascular effects of postnatal 
glucocorticoids

Animal Age Steroid
Organ 
system Parameter References

Rat Prepubertal 
adult

DEX Heart; 
Kidney

↓ Ventricular weight (42)

↑ GFR (72)

↑ Apoptosis (11)

Pig Term 
newborn

DEX Brain ↑ Cerebral BF (69)

Eye ↑ Retinal BF (69)

Human Preterm 
infant

DEX Brain ↑ Cerebral BF (70,73)

Eye ↑ Retinal BF (73)

SVR ↑ MABP (70)

HCT Brain No change cerebral 
BF

(67)

Kidney No change renal BF (67)

SVR ↑ MABP (67)

BF, blood flow; DeX, dexamethasone; GFR, glomerular filtration rate; hCT, hydrocortisone; 
MaBP, mean arterial blood pressure; sVR, systemic vascular resistance.
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CONCLUSION
Glucocorticoids are widely used in perinatal medicine. There 
is evidence that some of the vascular effects occur via nontran-
scriptional activation of eNOS. However, the vascular mech-
anisms of action appear to be dose-, duration- and vascular 
bed-dependent confounding interpretation of clinical risks 
and benefits. Data strongly support that antenatal glucocorti-
coids enhance pulmonary adaptation at birth. There is evidence 
antenatal steroids cause alterations in fetal systemic vascular 
tone as well, although the clinical impact of these changes is 
marginally understood. Postnatal glucocorticoids have benefi-
cial, protective effects in animal models of pulmonary hyper-
tension. Various adult tissue beds also benefit from postnatal 
steroids in high-dose and short duration, by a mechanism that 
appears to be nontranscriptionally mediated.

Several gaps remain in our understanding of glucocorti-
coid effects on the vasculature. The majority of the literature 
investigates the prenatal effects of glucocorticoids on the pul-
monary vascular bed while the brain and gastrointestinal beds 
of the antenatally exposed fetus and newborn remain largely 
unexplored. This may be relevant given the protection that is 
conferred postnatally on these organ systems and the impor-
tance of understanding whether it is NOS regulation or other 
molecular machinery that is responsible for the beneficial 
effects. Large animal models, such as the neonatal baboon, 
piglet and lamb possess vascular beds amenable to experimen-
tation that may shed light on the physiological and functional 
effects of glucocorticoids in the perinatal period while rodent 
and cell culture studies offer models to explore transcriptional 
activity, protein activation and downstream signal transduc-
tion. Whether findings in these experimental models are trans-
latable to the human neonate is still in question. Inconsistent 
outcome data have been reported on the impact of antenatal 
steroid exposure on blood pressure, and vascular stiffness in 
antenatally exposed adolescents and adults (78–81). Studies 
on the long-term effects of perinatal glucocorticoid exposure 
on the cardiovascular system in adulthood are needed both 
in experimental animal models and in children, while adoles-
cents and adults exposed to glucocorticoids in the perinatal 
period.
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