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Background: Despite years of research, the etiologies of 
preterm birth remain unclear. In order to help generate new 
research hypotheses, this study explored spatial and temporal 
patterns of preterm birth in a large, total-population dataset.
Methods: Data on 145 million US births in 3,000 coun-
ties from the Natality Files of the National Center for Health 
Statistics for 1971–2011 were examined. State trends in early 
(<34 wk) and late (34–36 wk) preterm birth rates were com-
pared. K-means cluster analyses were conducted to identify 
gestational age distribution patterns for all US counties over 
time.
Results: A weak association was observed between state 
trends in <34 wk birth rates and the initial absolute <34 wk 
birth rate. Significant associations were observed between 
trends in <34 wk and 34–36 wk birth rates and between 
white and African American <34 wk births. Periodicity was 
observed in county-level trends in <34 wk birth rates. Cluster 
analyses identified periods of significant heterogeneity and 
homogeneity in gestational age distributional trends for US 
counties.
Conclusion: The observed geographic and temporal pat-
terns suggest periodicity and complex, shared influences 
among preterm birth rates in the United States. These patterns 
could provide insight into promising hypotheses for further 
research.

Preterm birth, defined by the World Health Organization 
as the delivery of an infant before 37 completed weeks of 

gestational duration (1), is a major cause of infant mortality 
and long-term child morbidity in the United States (2–4). The 
search for the causes of preterm birth and its prevention has 
engaged multiple disciplines including the basic, clinical, and 
social sciences. While these research initiatives have docu-
mented associations between preterm birth and a wide range 
of biologic, demographic, social, and clinical influences (5–7), 
definitive insight into the primary etiologic pathways of pre-
term birth remains elusive (8).

There has been growing interest in the use of new analytic 
frameworks and techniques (9) to explore broad spatial and 
temporal patterns of preterm birth in the hope that these 
approaches might provide new clues to important etiologies 
or preventive opportunities (10–11). Often colloquially labeled 
“big data” analyses, these strategies take advantage of expand-
ing computing power and machine learning techniques to 
illuminate relationships or patterns in very large genetic, clini-
cal, or epidemiologic datasets (12–13). Among the most use-
ful of these approaches are cluster analyses which have been 
employed to identify complex patterns in health service utili-
zation (14) and a variety of health outcomes, including chronic 
respiratory disease (15), schizophrenia (16), and necrotizing 
enterocolitis (17).

This study assesses recent spatial and temporal trends in 
preterm birth in the United States. Of special concern is the 
exploration of patterns in these trends, particularly among 
different gestational age groupings, geographic regions, and 
social groups over time.

RESULTS
Temporal Trends
Trends of preterm birth in the United States are presented 
in Figure 1. Total births of <37 wk of gestation rose steadily 
between 1981 and 2006, increasing 35.6% over this time 
period. However, after 2006, the percentage of births born at 
<37 wk began to decline, falling 8.4% between 2006 and 2011. 
This trend was largely accounted for by changes in births of 
between 34 and 37 wk gestation. The percentage of births of 
<32 wk gestation was generally more stable over the study 
period but did rise 12.7% from 1981 through 2006 and then 
declined by 5.4% between 2007 and 2011.

Rates of preterm birth and trends for the 1995 to 2010 period 
and for the 2011 year for each of the 50 states and the District of 
Columbia are presented in Table 1. Considerable variation in 
trends over these periods was noted. States in the highest quin-
tile of <34 wk birth rates in 1995, showed little change between 
1995 and 2005 but averaged a 4.6% decline in this category 
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between 2005 and 2010. States in the lowest quintile of <34 wk 
birth rates in 1995 experienced modest increases between 1995 
and 2005 and a 3.0% decline in the 2005–2010 period.

The examination of gestational age trends between 2000 and 
2010 revealed a general inverse relationship between the abso-
lute rate of <34 births in 2000 and the percent reduction in this 
rate over the decade. However, this relationship was significant 
only for births to white women (P = 0.037). The relative weak-
ness of the association between initial absolute <34 wk birth 
rates and subsequent trends was also true when births <31 wk 
gestation were assessed independently.

The association between trends for the <34 wk and 34–36 wk 
gestational age groups are presented in Figure 2. Significant 
associations were found for total (P  <  0.05) (see Figure 2a), 
white (P < 0.05) (see Figure 2b), and African American births 
(P  <  0.01) (see Figure  2c). Note that only states reporting 
at least 1,000 African American births were included in the 
figure and that the scale of % change was greater for African 
American births than that for whites. In addition, a signifi-
cant relationship was also observed between trends in <34 wk 
gestation birth rates for white and African American births 
(P ≤ 0.001) (see Figure 2d).

Gestational age-specific birth rates were then calculated for 
all US counties between the years 1971 and 2008. 905 coun-
ties reported more than 10 births of <34 wk gestation annu-
ally for this period. However, the calculation of total national 
counts of year-to-year changes in county preterm birth rates 
was examined only for the 1985–2008 period, the years for 
which all states reported county-based data. Figure 3 presents 
the smoothed, moving average annual change in the percent 
of births occurring <34 wk for the 905 counties. The number 
of counties reporting >5% increase in the birth rate of <34 wk 
infants was generally similar to the number of counties report-
ing >5% decrease. However, counties reporting relative sta-
bility in the <34 wk birth rate generally outnumbered those 
reporting >5% changes. The figure also suggests that some 

periodicity may exist in the number of counties reporting 
increased rates of <34 wk births. Significant peaks occurring at 
~7-y intervals were noted.

Cluster Analysis
The k-means cluster analysis generated 10 patterns that best 
described the year-to-year changes in the distribution of births 
among nine gestational age groups. In this manner, each 
county was assigned to one of these characteristic clusters for 
each year during the study period. Figure 4 presents both the 
gestational age definitions generated by the k-means cluster 
analysis (Figure  4a) and the number of counties that were 
characterized by each of these 10 clusters for each year under 
study (Figure  4b). The colors were assigned randomly to 
each of the 10 clusters but are consistent in both Figure 4a,b. 
Figure  4a suggests considerable variation in the gestational 
age patterns generated by the cluster analysis, primarily in 
the gestational age groups > 36 wk. Figure 4b documents that 
while the cluster analysis was structured to identify 10 unique 
clusters, only 3 clusters accounted for more than half of all the 
county-years. The prevalence of these three clusters, cluster 1 
(color-coded as pink), cluster 4 (color-coded as orange), and 
cluster 7 (color-coded at tan) are shown in Figure 4b. Note 
that the y-axis for the prevalence of each of the clusters in 
the figure varies, given the wide variation in the number of 
counties falling into each cluster in any given year. Cluster 4 
(orange) and cluster 7 (tan) which predominated in the earlier 
years under study were characterized by relative increases in 
late preterm births. Cluster 1 (pink), which predominated in 
the latter years of study, was characterized by relative declines 
in mid and late preterm births. More broadly, the early years 
of the study were characterized by considerable heterogeneity 
in cluster assignments with cluster 4 (orange) accounting for 
the largest number of counties. However, by the early 1980’s, 
cluster 7 (tan) began to dominate the county assignments, cre-
ating a far more homogeneous cluster pattern. The 2000’s were 
characterized by greater heterogeneity in county assignments. 
During this latter period, cluster 1 (pink) was the most com-
mon cluster assignment.

The geographic distribution of the cluster assignments is 
depicted in Figure 5. Each of the national maps presents the 
cluster assignments (designated by the assigned colors) for 5 
representative years. The map for 1972 reflects areas of miss-
ing data as county data were not available for a considerable 
number of states during the early years of the study period. 
These were omitted from the cluster analyses until data 
became available from all these states in the mid 1970’s, except 
from Arizona which reported data beginning in the mid-
1980’s. Missing county data are depicted in the geo-temporal 
mapping as blank areas. However, for the majority of states 
reporting county data, there was substantial heterogeneity in 
cluster patterns throughout the United States. The maps for 
1982, 1992, and 2002, on the other hand, depict the predomi-
nance of cluster 7 (tan) and cluster 1 (pink) throughout the 
country. This suggests that over this time period, the trends 
in gestational age distribution noted in national data reflected 

Figure 1.  Trends in preterm birth rates for the United States by gesta-
tional age groups <32 wk, 32–37 wk, and total births <37 wk gestation: 
1981–2011.

0

3

6

9

12

15

2010200520001995199019851981

Total <37 wk

32–37 wk

<32 wk

Year

%
 o

f a
ll 

bi
rt

hs

Volume 77  |  Number 6  |  June 2015          Pediatric Research  837



Copyright © 2015 International Pediatric Research Foundation, Inc.

Articles         Byrnes et al.

Table 1.  Trends in preterm births and birth rates: US states and the District of Columbia

State

2011 %change 1995–2000 %change 2000–2005 %change 2005–2010

Births %<34 wk %34–36 wk <34 wk 34–36 wk <34 wk 34–36 wk <34 wk 34–36 wk

Alabama 59,354 4.6% 10.3% 8.4% 12.2% 9.8% 12.2% −9.6% −5.5%

Alaska 11,456 2.8% 7.5% 12.1% 31.2% −6.8% 11.6% −7.8% −9.3%

Arizona 85,543 2.9% 9.2% 7.0% 2.3% 10.7% 13.7% −3.5% −8.5%

Arkansas 38,715 3.6% 9.5% 14.7% 9.4% −2.3% 1.9% −7.9% −3.6%

California 502,120 2.7% 7.1% −1.8% −1.6% 7.6% 9.0% −3.9% −3.9%

Colorado 65,055 3.0% 7.3% 1.2% 0.7% 11.1% 14.9% −9.0% −13.4%

Connecticut 37,281 3.1% 6.9% 8.8% 9.0% 7.8% 0.1% −1.7% −1.0%

Delaware 11,257 3.7% 7.4% 4.1% 7.1% 7.6% 12.1% −0.5% −12.1%

District of Columbia 9,295 4.5% 9.1% −19.8% −7.2% −23.6% −8.6% 21.3% −13.0%

Florida 213,414 3.9% 9.1% 2.7% 6.5% 11.8% 11.0% 0.5% −5.2%

Georgia 132,409 3.9% 9.3% −3.8% 5.0% 4.0% 18.0% 7.3% −1.5%

Hawaii 18,956 3.6% 8.7% 5.8% 3.9% 18.8% 7.6% −2.8% 1.2%

Idaho 22,305 2.6% 7.6% 2.2% 11.2% 11.5% 12.7% −4.8% −11.0%

Illinois 161,312 3.7% 8.4% 1.0% 3.7% 7.0% 8.9% −5.3% −8.2%

Indiana 83,701 3.3% 8.2% 6.6% 12.4% 14.3% 13.7% −13.5% −12.7%

Iowa 38,214 3.1% 8.0% 8.3% 10.6% 11.4% 12.2% −2.4% −2.5%

Kansas 39,642 3.0% 8.2% 13.1% 10.6% 5.7% 12.3% −11.1% −13.8%

Kentucky 55,370 3.7% 9.6% 4.1% 10.9% 14.8% 22.2% −5.8% −11.0%

Louisiana 61,888 4.9% 10.6% 2.8% 9.7% 10.7% 9.5% −10.8% −7.5%

Maine 12,704 2.8% 6.8% 0.9% 5.1% 6.2% 14.6% 0.3% −11.7%

Maryland 73,093 3.8% 8.6% −3.1% 2.2% 1.0% 6.0% −1.5% −5.1%

Massachusetts 73,166 3.1% 7.2% 22.4% 20.3% 12.8% 13.7% −8.2% −4.4%

Michigan 114,008 3.7% 8.3% 3.8% 7.8% 5.0% 7.9% 2.9% −3.6%

Minnesota 68,409 2.8% 7.1% 6.9% 6.7% 10.5% 14.0% −6.1% −4.3%

Mississippi 39,860 5.0% 11.9% 5.6% 5.8% 9.6% 17.9% −6.2% −6.1%

Missouri 76,117 3.3% 8.3% 5.7% 3.7% 12.6% 12.9% −4.3% −10.4%

Montana 12,069 2.9% 7.9% 11.7% 12.5% −6.7% 12.3% 23.8% −0.9%

Nebraska 25,720 2.9% 7.7% 8.7% 5.2% −50.4% 107.4% −9.2% −5.1%

Nevada 35,296 3.5% 9.7% 6.9% 10.2% 4.4% −4.7% 11.1% 14.6%

New Hampshire 12,851 2.8% 6.7% 24.7% 4.1% 5.6% 22.6% −8.5% −11.4%

New Jersey 105,883 3.7% 7.9% 13.4% 9.2% 7.8% 8.5% −3.2% −8.9%

New Mexico 27,289 3.0% 8.8% 18.8% 5.7% 1.7% 9.4% −13.9% −7.3%

New York 241,312 3.2% 7.7% 0.1% 5.3% 8.7% 10.6% −2.3% −6.5%

North Carolina 120,389 4.1% 8.4% 0.9% 3.8% 2.6% 6.9% −3.5% −8.7%

North Dakota 9,527 2.9% 7.0% 2.7% 6.3% 13.1% 6.3% −4.7% −5.3%

Ohio 137,918 3.9% 8.2% 1.4% 6.4% 10.9% 10.7% 1.3% −9.1%

Oklahoma 52,272 3.7% 9.4% 9.8% 10.8% 7.2% 13.3% 8.1% 5.3%

Oregon 45,155 2.4% 6.7% 5.2% 3.3% 5.1% 12.5% 2.5% −3.8%

Pennsylvania 143,178 3.3% 7.7% −0.3% 4.3% 9.6% 6.8% −3.9% −3.6%

Rhode Island 10,960 3.1% 7.2% 22.7% 10.8% 6.0% 13.9% −5.4% −12.4%

South Carolina 57,393 4.5% 9.5% 6.3% 10.2% 14.6% 15.0% −6.3% −10.2%

South Dakota 11,846 2.9% 8.2% 9.6% 15.9% −7.4% 11.3% 30.2% −9.7%

Tennessee 79,588 3.6% 9.1% −1.3% 5.5% 10.9% 7.5% −16.5% −10.2%

Texas 377,445 3.6% 9.2% 9.7% 10.8% 7.2% 8.5% −3.4% −3.4%

Utah 51,223 2.6% 8.2% 14.2% 13.7% 3.9% 11.1% −2.1% −5.9%

Vermont 6,078 2.7% 6.1% −5.4% 0.8% 20.7% 7.0% 2.4% −10.9%

Virginia 102,652 3.4% 7.7% −2.9% −1.8% −0.4% 7.7% 2.2% −8.2%

Washington 86,976 2.8% 7.0% 5.3% 13.7% 14.8% 11.7% −0.6% −5.0%

West Virginia 20,717 3.8% 8.9% 6.1% 16.1% 3.8% 17.2% −12.3% −16.9%

Wisconsin 67,810 2.9% 7.5% 9.3% 8.6% 8.5% 8.9% −2.5% −6.1%

Wyoming 7,399 2.5% 7.7% −0.8% 13.6% 7.2% 13.4% −5.4% −19.0%
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fairly generalized trends with relatively little geographic varia-
tion among different counties or regions. However, the map 
for 2008 reveals greater variation with cluster 2 (red), cluster 5 
(purple), and cluster 9 (dark blue) growing in prevalence, par-
ticularly in parts of the mid-west.

DISCUSSION
This study utilized four decades of national birth data and 
machine learning algorithms to examine spatial and temporal 
patterns in preterm births for the total population of United 
States. States with high absolute rates at the beginning of the 
study period tended to have more precipitous declines over 
subsequent years; however, this was not uniformly observed as 

some states with high initial rates experienced little improve-
ment. While early and late preterm birth rates may reflect 
different phenotypes or etiologies, our observations indicate 
that trends in these rates tend to move together within states. 
Moreover, while the disparity in preterm birth rates between 
African American and white births in any given state remains 
profound, the absolute rates also tend to move together over 
time. County-level birth rates of preterm infants also revealed 
some temporal synchrony with the suggestion of a possible 
multi-year periodicity. When machine learning techniques 
were used to assess temporal and spatial patterns in preterm 
births, a dynamic picture emerged characterized by periods of 
both heterogeneity and homogeneity among US counties.

Figure 2.  The relationships between the percent change in gestational age <34 wk birth rates and the percent change in gestational age 34–36 wk birth 
rates between 2000 and 2010 in all US states and the District of Columbia and for White and African American births. Each data point represents one 
state or the District of Columbia (a). Births in all states and the District of Colombia; (b) White births; (c) African American births; (d) Percent change in 
gestational age <34 wk birth rates for White births by percent change in gestational age <34 wk birth rates for African American births. Note that states 
reporting less than 500 African American births for any year during the study period are not plotted on the figure.
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There was considerable variation in state preterm birth 
rate trends over the study period. Overall, jurisdictions with 
the highest absolute preterm birth rates in 2000, such as the 
District of Columbia, experienced on average the largest 
declines over the subsequent decade. This observation could 
reflect the general tendency of initially aberrant rates to regress 
to the mean. However, the relationship between initial absolute 
rates and subsequent trends was not strong to begin with and 
there were states that did not conform to this general observa-
tion. The reasons for this variation are unclear; however, trends 
in a variety of demographic or obstetrical management strate-
gies are not likely to have been responsible for the observed 
variations (18,19).

While it has been difficult in large datasets to accurately dis-
tinguish between the wide variety of clinical phenotypes asso-
ciated with preterm birth (20), the stratification of preterm 
births into early and late preterm births has served as a use-
ful proxy (21). While there was considerable differentiation in 
the state-specific trends in early and late preterm birth rates, 

Figure 3.  Number of counties reporting an annual >5 percent and >10 
percent increase in the birth rate of <34 wk gestation births: United States, 
moving 2-y average (total counties = 905).
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the analyses presented here suggest that these two rates do 
not move independently within states. Rather, there was a sig-
nificant relationship in the movement of these rates over time 
raising the question of whether these gestational age categories 
may share some common influences.

Periodicity in preterm birth rates has been noted for some 
time. However, this has largely taken the form of seasonal 
patterns, including patterns that may be related to annual 
infectious outbreaks, such as influenza (10). There has been 
little evidence suggesting significant periodicity beyond 1 y. 
The finding in this study of some periodicity in multi-year 
time scales warrants confirmation and is undergoing more 

detailed analysis. Nevertheless, these findings do raise ques-
tions regarding potential infectious etiologies that tend to 
operate on multi-year cycles (22). In addition, social phenom-
ena, including economic cycles (23,24), demographic shifts, 
including trends in maternal age (25), or other environmental 
influences (26,27) could produce complex, multi-year cycles 
and are worthy of more directed research into the specific role 
these potential influences have on trends in preterm birth.

The cluster analysis revealed both periods of relative congru-
ity and incongruity in preterm birth trends across the United 
States. The use of unsupervised, agnostic clustering techniques 
are increasingly being used to identify heretofore unrecognized 

Figure 5.  Maps of county cluster assignments for selected years. (a) 1972; (b) 1982; (c) 1992; (d) 2002; (e) 2008. Colors represent one of the 10 cluster 
assignments as defined in Figure 4 (note gray areas represent counties that did not report sufficient data for the specified year).
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patterns in large, multidimensional datasets concerned with 
complex health disorders (28,29). In this analysis clusters were 
determined by seeking the 10 patterns that best described year-
to-year changes in gestational age distributions for all counties 
in the United States from 1971 through 2008. While the pre-
dominance of shifts in late preterm and term births appears 
to have influenced the most prevalent clusters, the generalized 
distribution of these trends at the county level was of special 
interest. The transformation over time from a highly heteroge-
neous pattern to a long, homogeneous pattern and then most 
recently, back to a more heterogeneous pattern raises impor-
tant questions about the broad influences shaping gestational 
age patterns in specific geographic areas. There is a large litera-
ture documenting a wide variety of individual social, behav-
ioral, and environmental contributors to preterm birth, many 
of which vary substantially by geographic location. Periods 
of substantial spatial heterogeneity in preterm birth patterns 
could reflect a time frame in which such local, variable influ-
ences predominate. However, during periods of substantial 
homogeneity in preterm birth patterns, these local variations 
in etiologic influences may become relatively aligned or com-
bined with broad currents of influence that affect gestational 
age distributions across large geographic areas, transcending 
county, state and regional borders. While this analysis cannot 
identify the distinct contribution of any specific influence, it 
is useful to document that such broad, spatial, and temporal 
influences exist and may be important in shaping patterns of 
preterm birth. Such influences could include rapidly dissemi-
nated changes in clinical practice (30,31), regional or national 
trends in economic well-being (23,24), or wide-scale environ-
mental exposures, some of which remain somewhat specula-
tive (27).

The findings of this analysis should be interpreted with cau-
tion. The determination of gestational age in US Natality Files 
has traditionally been based on reported last menstrual period, 
a variable long recognized as being susceptible to error, par-
ticularly for low gestational ages (32). In addition, the relatively 
long period under study in this analysis would likely involve a 
changing capacity to assess gestational age correctly. However, 
for this concern to introduce biased estimation, the error in 
gestational classification would need to vary with the geo-
graphic and spatial clusters. Nevertheless, the US Natality Files 
have been used successfully to identify a variety of important 
risk factors for preterm birth as well as in documenting long-
term trends in adverse birth outcomes (33). Moreover, the 
focus of this analysis was on broad patterns of preterm birth 
using relatively large geographic aggregations of births or clus-
ters of births. The presented analyses also utilize both state and 
county-level data. These spatial jurisdictions are hierarchal in 
nature (states are composed of counties) and, while the county 
and state-level analyses are presented separately, some caution 
should be used in assessing potential influences that may vary 
or be shared by individuals or across different spatial aggrega-
tions (34).

The cluster analysis should also be interpreted with care. 
The construction of 10 clusters in the k-means analysis was an 

arbitrary decision and it is possible that levels of heterogeneity 
could change if more or fewer clusters were constructed. In 
addition, unlike the temporal trend analyses, the cluster analy-
ses were confined to singleton births in order to seek patterns 
generally unassociated with factors related to multiple gesta-
tions. The clustering models utilizing three temporal periods 
could generate anomalous results at the earliest and latest mar-
gins of the period under study. However, a sensitivity analy-
sis was conducted to assess this concern and confirmed the 
robustness of the presented cluster assignments. It should also 
be noted that there have been a variety of new techniques in the 
spatial and temporal analysis of complex datasets (35), some of 
which have been applied to the study of birth outcomes (36). 
The current analysis used k-means cluster strategies because of 
its computational efficiency for high-dimensional analyses in 
very large datasets; however, these new statistical refinements 
could provide enhanced analytic approaches to spatial and 
temporal health-related research.

While the exploration of broad spatial and temporal pat-
terns of preterm birth using very large databases and machine 
learning techniques cannot substitute for detailed epidemio-
logic, clinical, and basic investigations, the analyses presented 
here utilize new analytic techniques to explore broad patterns 
of preterm birth in the United States. The findings suggest 
potential periodicity and common influences among different 
gestational age groups and disparate geographic jurisdictions 
over time. These broad temporal and spatial patterns could 
help frame new analytic perspectives and promising inves-
tigative hypotheses into preterm birth, one of the most pro-
found and persistent adverse health outcomes in the United 
States today.

METHODS
Study Population
Our analyses utilized birth certificate information for all births in 
the United States between 1971 and 2011 and were derived from the 
National Center for Health Statistics Natality Files (37). These files 
provide information on a variety of demographic, maternal and 
infant characteristics, including maternal and infant race\ethnicity, 
estimated gestational age, and county and state of maternal residence. 
All counties across 51 regions (50 states and the District of Columbia) 
were included in the analysis. The analyzed data set consisted of more 
than 3,000 counties over 40 y, yielding about 120,000 county-year 
data points representing ~145 million live births.

Temporal Trends
Gestational age-specific birth rates (i.e., birth prevalences) were cal-
culated for each year in the study period. These rates were generated 
by dividing the number of births in a specified gestational age cat-
egory in a given year by the total number of births for that population 
and year and presented as a percentage of all births. For the secular 
trend analyses, gestational age-specific birth rates were calculated for 
all live-births (including all singleton and multiple births; stillbirths 
were not included) in each state and the District of Columbia. State 
and county designation was allocated based on the residence of the 
mother at the time of delivery and not on the state or county loca-
tion of birth. Similarly, the designation of a birth as white or African 
American was based on maternal report. Analyses were performed 
by using SAS 9.1 (SAS Institute, Cary, NC) statistical software. Simple 
trends were calculated for 5-y periods between 1995 and 2010. In 
addition, analyses were conducted to assess whether states with rela-
tively high absolute rates of preterm births in 2000 were more or less 
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likely to have experienced a decline in these rates over the subsequent 
10-y period. Analyses were also conducted to examine the relation-
ship between trends in <34 wk and 34–36 wk categories and between 
different racial-ethnic groups.

County-Level Trends
Distinct from the state-based analyses, trends were calculated for all 
US counties for the 1985 through 2008 period. County-level data were 
not available subsequent to 2008. Total counts of all counties expe-
riencing a >5% and/or >10% year-to-year increase of <34 wk births 
were calculated for the 1985–2008 period, the years for which all 
states reported county-based data. Trends were calculated as the per-
cent change in preterm births over the examined period as (Rt2–Rt1/
Rt1)/100, where Rt2 represents the latter year or years and Rt1 the initial 
study year or years. Simple and smoothed, moving average plots of 
counties experiencing annual changes of >5% and >10% increases in 
<34 wk births were calculated.

Cluster Analysis
We used cluster analysis to characterize temporal-spatial patterns of 
gestational age at delivery for all singleton births in the United States 
between 1971 and 2008. Clustering is used to detect latent structures 
or regularities within a dataset. We used the k-means procedure, a 
clustering strategy that requires the choice of the desired number 
of cluster centers with the k-means procedure iteratively estimating  
the cluster centers by minimizing the total variance within each  
cluster (38). The first step of the analysis was the calculation of gesta-
tional age-specific birth rates for singleton births for each county in 
the United States for the period 1971 through 2008. The percentage 
of births that fell into each of the following gestational age categories 
for each year in each county was computed: Under 20, 20–27, 28–31, 
32–35, 36, 37–39, 40, 41, 42 wk and over. Next temporal trends for 
each category were characterized using a model which breaks the date 
range 1971–2008 into three periods 1971-A, A-B, B-2008 (where the 
model selects A and B independently for each county and each age 
category) and fits a straight line to the data in each time range, forc-
ing the lines to meet at the boundary years A and B. The slope of the 
trend line in each year was taken to characterize the trend for that age 
group in that county for that year. Each year in each county was thus 
characterized by nine gestational age trend slopes. Each county-year 
pair was assigned to this vector of nine values. The number of clusters 
is set a priori and here the vectors were associated into 10 clusters via 
the k-means clustering methodology (26). The above analysis was car-
ried out in python (Python Software Foundation, Beaverton, Oregon) 
using the SciPy library (SciPy.org). The presented analyses utilized 
publicly available vital statistics datasets and were approved by the 
Human Subjects Institutional Review Board of Stanford University.
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