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Background: The importance of Toll-like receptor 4 in nec-
rotizing enterocolitis (NEC) has been intensively studied, but its 
downstream signaling and the potential regulatory mechanisms 
remain unidentified. Our study focused on the role of myeloid 
differentiation factor 88 (MyD88), the first downstream adaptor 
of Toll-like receptor 4 inflammatory and apoptotic signaling in 
the pathogenesis of NEC.
Methods: MyD88 knockout (MyD88−/−-Ko) mice and lentivi-
rus-mediated stable MyD88-knockdown cell line (IEC-6) were 
used. NEC was induced by formula gavage, cold, hypoxia, 
combined with lipopolysaccharide (LPS) in vivo, or LPS stimu-
lation in vitro. NEC was evaluated by histology and multiple 
inflammatory cytokines. Enterocyte apoptosis was evaluated 
by terminal-deoxynucleoitidyl transferase-mediated nick end 
labeling (TUNEL) or Annexin analysis. Inflammatory or apop-
totic molecules including NF-κB, Toll/IL-1R domain-containing 
adaptor-inducing IFN-β, interferon regulatory factor 3, Bax, Bcl-
2, and caspases were examined by quantitative real-time PCR 
(qRT-PCR).
results: In the MyD88-Ko group, NEC severity and intesti-
nal enterocyte apoptosis rate were reduced, the expression of 
NF-κB, caspases, and Bax, were all downregulated, while Toll/
IL-1R domain-containing adaptor-inducing IFN-β and interferon 
 regulatory  factor 3 were upregulated, and antiapoptotic gene 
Bcl-2 remained stable. Cytokine levels of interleukin (IL)-6, IL-1β, 
and tumor necrosis factor-α (TNF-α) were also all decreased.
conclusion: MyD88-dependent signaling is the prevailing 
inflammatory and apoptotic signaling in Toll-like receptor 4 
downstream signaling; MyD88-Ko resulted in reduced inflam-
matory severity and apoptosis, though MyD88-independent 
signaling can also be activated, but is of less dominant for the 
development of NEC.

necrotizing enterocolitis (NEC) is the leading cause of 
death from gastrointestinal disease in preterm infants, and 

remains as a major cause of long-term dysfunction in those who 
survive the disease (1–4). Although the pathogenesis of NEC 
remains incompletely understood, emerging evidence suggests 

that toll-like receptors (tLRs), especially tLR4, plays an essen-
tial role in innate and adaptive immune responses to invading 
pathogens in the development of NEC (5–10). Upon recogni-
tion of a specific pathogenic ligand, signaling cascades are acti-
vated through several adaptor molecules, which determine the 
specificity of the response (11). The first and mostly essential 
utilized adaptor is myeloid differentiation factor 88 (MyD88), 
which was originally described as part of the interleukin (IL)-1 
receptor-signaling complex. MyD88 is almost required in all 
tLRs signaling (12–14). Upon stimulation, two modes of the 
signaling will be initiated, one of them is tLRs signals via the 
adaptor protein MyD88 (MyD88-dependent pathway) (15,16). 
The adaptor molecule MyD88 is necessary for tLRs signaling 
events, which results in the induction of a core set of responses 
through the activation of nuclear factor-κB (NF-κB) and the 
production of proinflammatory cytokines; a second signaling 
route for tLRs was involved to the adaptor proteins toll/IL-1R 
domain-containing adaptor-inducing IFN-β (tRIF (17,18); 
MyD88-independent pathway), the signaling of tLRs occurs 
through the tRIF-dependent pathway (also called MyD88-
independent pathway) that leads to the activation of interferon 
regulatory factor 3 (IRF3)—a key transcription factor that is 
responsible for the induction of IFN genes (19–22). tRIF and 
IRF-3 are all to be responsible for the MyD88-independent 
induction of NF-κB as well. The transcription factor NF-κB lies 
at the nexus of both antiapoptotic and proinflammatory cas-
cades in chronic inflammatory bowel disease (23–25).

The regulation of enterocyte apoptosis in the newborn intes-
tine plays an important role in determining the balance between 
mucosal homeostasis and disease (26). Such regulation may be 
of particular relevance to the development of NEC, a devastat-
ing illness of premature neonates that is characterized by exag-
gerated enterocyte apoptosis leading to severe intestinal injury. 
Lipopolysaccharide (LPS) can induce apoptosis via a death 
pathway involving tLR4 signaling. MyD88 subsequently binds 
Fas-associated death domain–containing protein, which pro-
motes activation of caspase 8 (27–29). Caspase 9 is related to the 
mitochondrial membrane disruption that is another important 
process controlling apoptosis. Caspase 8 and caspase 9 are both 
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activated in the apoptotic process and subsequently processes 
executioner caspases 3 (28,30). These steps are all essential for 
apoptosis induction.

In seeking to understand the increased susceptibility of the 
preterm infant to the development of NEC, we now focus on 
the function of MyD88 within the developing intestine and 
examine the relative roles of tLR4/MyD88-dependent and 
tLR4/MyD88-independent signaling in the neonatal intes-
tinal inflammatory response and apoptosis mechanism. We 
now demonstrate that NEC is associated with the activation 
of tLR4/MyD88-dependent signaling and tLR4/MyD88-
independent signaling. taken together, these findings provide 
evidence that MyD88 knockout can significantly reduce the 
severity of inflammation and apoptosis in NEC that suggests a 
mechanism to explain the injurious effects of LPS on the intes-
tinal epithelium in the pathogenesis of NEC.

RESULTS
NEC Severity Was Attenuated in MyD88−/− Animal Group
In the current research, all the animals in four groups are 
survived and the incidences of NEC in wild type (Wt) and 
MyD88-Ko animals exposed to NEC are 100% (8/8) and 
62.5% (5/8), respectively. Compared with breastfeeding 
control mice, Wt littermates showed marked disruption in 
mucosal structure after induction of NEC. The inflamma-
tory severity of NEC was significantly reduced in MyD88-Ko 
mice compared with Wt as evaluated by histology (P < 
0.05). There were no statistical differences regarding intes-
tinal histology between MyD88-Ko and Wt control group 
(P > 0.05), which were breast fed alone (Figure 1). Intestinal 
inflammation severity scores are shown in Supplementary 
Table S1 online.

MyD88 Knockdown in IEC-6 Cell Line
MyD88 expression was analyzed by quantitative real-time PCR 
(qRt-PCR) and western blot in MyD88-knockdown intestinal 
enterocyte cells (IEC-6). Compared with control and non-
target–treated cells, MyD88 expression was effectively silenced 
in two LvshMyd88 cell lines by 79.3 and 72.6%, respectively 
(Figure 2a). MyD88 protein level was significantly reduced in 
two silences cell lines, which was consistent with the result of 
qRt-PCR (Figure 2b).

Greater Difference of MyD88 Expression Was Found Between 
Knockdown and WT Cell Lines After LPS Stimulation
LPS was administrated as inflammatory stimulator in 
MyD88-knockdown and Wt IEC-6 cell lines. The mRNA 
and protein level of MyD88 was evaluated by qRt-PCR 
and western blot. After stimulation, MyD88 mRNA 
expression was significantly upregulated at all selected 
time points in IEC-Wt group, while it remained stable at 
low level in  IEC-MyD88-knockdown group (Figure 2c). 
Comparable difference of MyD88 protein level was also 
detected between  IEC-Wt and IEC-MyD88-knockdown 
cell lines and it was consistent with the result of qRt-PCR 
(Figure 2d).

The Apoptosis of Enterocytes Is Inhibited in Both MyD88−/− Mice 
and MyD88-Knockdown Cell Strain
The apoptosis rate of enterocytes in different groups was 
evaluated by Annexin V analysis. Before LPS treatment, 
apoptosis rate was lower in MyD88-knockdown cell lines 
(0.68 ± 0.07) than that in Wt cell line (2.43 ± 0.67). After 
LPS treatment, the enterocyte apoptotic rate was significantly 
increased in IEC-6 Wt cells (11.76 ± 1.65), but it remained 
stable in MyD88-knockdown group (0.34 ± 0.02). The apop-
tosis rate of MyD88-knockdown group was significantly 
lower than that in Wt group after LPS stimulation (Figure 
3). Apoptotic ratio before and after LPS treatment is shown 
in Supplementary Table S2 online.

The effects of tLR4/MyD88 activation on enterocyte apop-
tosis were assessed by terminal deoxynucleoitidyl transferase-
mediated nick end labeling (tUNEL) in small intestinal tissue 

Figure 1. MyD88-Ko mice were protected from the development of NEC. 
Hematoxylin and eosin staining of intestinal mucosa structure in the 
different groups. (a) MyD88-WT  or (b) MyD88-Ko served as breast fed con-
trols. NEC was induced in newborn (c) MyD88-WT  and (d) MyD88-Ko mice 
(original magnification: ×400, bar = 50 μm). NEC severity was quantified 
by pathological scoring system (e). No fill, control; black fill, NEC. *P < 0.05 
by ANOVA compared with MyD88-Ko with NEC, †P < 0.05 by ANOVA com-
pared with MyD88-WT breast fed control animals. **P < 0.05 by ANOVA 
compared with MyD88-Ko breast fed control animals. Data from four 
separate experiments (n = 8 animals/experimental group). Ko, knockout; 
NEC, necrotizing enterocolitis; WT, wild type.
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of newborn mice with NEC. A marked decrease of enterocyte 
apoptosis was detected in MyD88-Ko mice compared with Wt 
mice (P < 0.05), there was no difference of enterocye apoptosis 
between breast fed control of two strain mice groups (P > 0.05; 
Figure 4).

NF-κB Activation Was Decreased in MyD88−/− Mice and 
Potentially Mediated by TRIF-Dependent Signaling
The mRNA expression of the transcription factor NF-κB was 
detected by qRt-PCR and there was no difference between 
controls from either Wt or MyD88-Ko. While after NEC 
induction, the expression of NF-κB is significantly decreased 
in MyD88-Ko mice compared with Wt mice. TRIF and IRF-3  
as key genes in TLR4/MyD88-independent signaling, both 
were upregulated in MyD88-Ko mice than those in Wt mice; 
MyD88-WT mice with NEC demonstrated upregulated and 
higher in the level of TRIF and IRF-3 expression than control 
(Figure 5).

MyD88 Gets Involved in the Regulation of Apoptosis
The expression of key apoptosis related genes, including caspase 
8, 9, 3, Bax and Bcl-2 were evaluated by qRt-PCR. In MyD88-Ko 
NEC groups, caspase 3 and caspase 8 were decreased compared 
with Wt NEC groups, but were all increased compared with 
breast fed control. The expression of caspase 9 in MyD88-Ko 
NEC groups was more decreased compared with Wt NEC 
groups, while it has no difference compared with MyD88-Ko 
breast fed control. Besides, compared with breast fed control, 
the expression of Bax remained unchanged in MyD88-Ko mice 
but increased significantly in Wt mice after induction of NEC; 
the expression of Bcl-2 remained stable within two mice strains 
with NEC or breast fed controls (Figure 5).

MyD88-Knockdown Attenuates the Production of 
Proinflammatory Cytokines In Vitro and In Vivo
Cytokine level of IL-6 and IL-1β in cell supernatant were 
examined by Liquid chip (Luminex, Austin, tX). Compared 

Figure 2. MyD88 expression in vivo before and after stimulation of LPS. (a) Quantitative real-time PCR (qRT-PCR) or (b) western blot assay MyD88 mRNA 
expression and protein expression in the cells after lentivirus transduction. Control: untreated IEC-6 group; nontarget: IEC-6 transfected with vector only; 
LvshMyD88- 1, 2: two IEC-6 lines transfected with lentiviral plasmid that expressed the shRNA of MyD88. Quantification of MyD88 mRNA (a, right) and pro-
tein (b, bottom) expression was analyzed. *P < 0.05 by ANOVA compared with control group. †P < 0.05 by ANOVA compared with nontarget group. After 
stimulation of LPS (50 μg/ml) at different times, MyD88 expression was detected by qRT-PCR or western blot (d, top) in IEC-wt and IEC-MyD88-knockdown 
group. Quantification of (c) MyD88 mRNA and (d) protein (bottom) expression was analyzed. **P < 0.05 by two-tailed Student’s t-test compared with IEC-
6-wt control (no stimulation with LPS). *P < 0.05 by ANOVA compared with IEC-MyD88-knockdown with LPS at different time. †P < 0.05 by ANOVA com-
pared with IEC-wt control group (no fill: IEC-WT; black fill: IEC-MyD88-knockdown). IEC, intestinal enterocyte cells; LPS, lipopolysaccharide; WT, wild type.
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with nontreated control cells, both IL-6 and IL-1β level were 
increased after LPS treatment in IEC-6 cells. However, the level 
of IL-6 and IL-1β in IEC-6-MyD88-knockdown cells remained 
stable at all time points after LPS stimulation (Figure 6a,b).

In Wt mice with NEC, IL-1β, and tumor necrosis factor-α 
(tNF-α) level in intestinal tissues were both higher than 
those of breast fed groups. In MyD88-Ko mice, IL-1β level was 
increased but no difference was detected for tNF-α compared 
with breast fed mice; both IL-1β and tNF-α level in tissue 
were lower in MyD88-Ko mice with NEC compared with Wt 
NEC groups (Figure 6c,d).

DISCUSSION
In our study, we successfully provided evidence that MyD88-Ko 
animals and MyD88-knockdown intestinal enterocyte cells 
lead to decreased severity of NEC compared with Wt groups. 
We also detected the proinflammatory cytokines level of IL-1β 
and IL-6 in cultured MyD88-knockdown cell supernatant and 
the level of IL-1β and tNF-α in MyD88-Ko animal intesti-
nal tissue. Our results also showed the deficiency of MyD88 
resulted in decreased proinflammatory cytokines, which 
could further confirm our previous conclusion of pathological 

Figure 3. FCM detection of apoptosis after treated with LPS in vitro. (a) IEC-WT control group; (b) 12 h after stimulation with LPS in IEC-WT group; 
(c) IEC-MyD88-knockdown control group; (d) 12 h after stimulation with LPS in IEC-MyD88-knockdown group; the Q2 quadrant (annexin V+/7-AAD+) 
indicates the percentage of apoptosis. (e) Quantification of apoptosis rate determined by a blinded observer (no fill: IEC-WT; black fill: IEC-MyD88-
knockdown). *P < 0.05 by ANOVA compared with IEC-6-wt control, **P < 0.05 by ANOVA compared with IEC-6-WT with LPS. Representative data from 
four separate experiments with three times per group. IEC, intestinal enterocyte cells; LPS, lipopolysaccharide; WT, wild type.
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evaluation. Not only that, we also demonstrated that the defi-
ciency of MyD88 could protect from increasing apoptosis of 
intestinal epithelial cells. These findings indicate that MyD88 is 
a key factor in attenuating intestinal enterocyte apoptosis and 
avoiding the development of NEC.

NEC develops in a stressed preterm infant in the setting of 
intestinal barrier disruption, systemic inflammation and leads 
to multisystem organ failure. The intestinal barrier lies at the 

interface between microbes within the intestinal lumen and 
the immune system of the host, and has both immunological 
and mechanical components. These components serve to pro-
tect the host from invading pathogens. Some factor, such as the 
components of Gram-negative bacteria, can specifically recog-
nize tLRs at the intestinal interface and activate tLRs-MyD88 
signaling that leads to the apoptosis of enterocytes. Apoptosis 
is a form of programmed cell death that allows elimination 

Figure 4. Enterocyte apoptosis was less in MyD88-Ko mice than that in WT mice in the development of NEC. Micrographs showing TUNEL-stained terminal 
ileum of (a,c) WT mice and (b,d) MyD88-Ko mice that were either breast fed (a,b) or NEC induced (c,d; original magnification ×200). Highlighting represents 
TUNEL-positive enterocytes. (e–h) Propidium iodide staining of cell nucleus is shown under the relative figures. (i) Quantification of apoptosis rates using 
Image J in WT or MyD88-Ko mice with or without NEC. **P < 0.05 vs. MyD88-Ko breast fed control by ANOVA; *P < 0.05 vs. WT breast fed control animals 
by ANOVA; †P < 0.05 vs. MyD88-Ko animals with NEC by ANOVA. Bar = 100 μm. No fill, control; black fill, NEC. Data from four separate experiments (n = 8 
animals/experimental group). NEC, necrotizing enterocolitis; TUNEL, terminal deoxynucleoitidyl transferase-mediated nick end labeling; WT, wild type.
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Figure 5. Analysis of gene expression in apoptosis and TLR4 signaling. Quantitative real-time PCR (qRT-PCR) showing (a) caspase 3, caspase 8, caspase 9, 
(b) Bax, Bcl-2, (c) NF-κB, TRIF, and IRF-3 in WT and MyD88-Ko mice with NEC compared to breast fed control. RT-PCR data are normalized to β-actin RNA 
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No fill, WT; black fill, MyD88-Ko; four separate experiments with eight mice per group. IRF, interferon regulatory factor; NEC, necrotizing enterocolitis; TRIF, 
Toll/IL-1R domain-containing adaptor-inducing IFN-β; WT, wild type.
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of irreversibly damaged cells while preserving overall tissue 
function, and it plays a vital role in normal developmental 
processes. However, overwhelming activation of apoptosis 
may result in tissue failure. The impairments in the function 
of the intestinal barrier may predispose the host to the inva-
sion of gut-derived microbes and to the development of sys-
temic inflammatory disease. This process, termed “bacterial 
translocation,” may be compounded during instances in which 
the mechanisms that regulate the repair of the intestinal bar-
rier are disrupted. In the results of our study, the deficiency 
of MyD88-Ko can lead to decreased apoptosis of enterocytes 
in NEC occurrence. We demonstrate that the deficiency of 
MyD88 have attenuated NEC inflammatory severity because 
of protecting from increased apoptosis and “bacterial translo-
cation” in intestinal barrier.

LPS binding to tLR4, triggers activation of the cellular sig-
naling pathways resulting in nuclear translocation of NF-κB 
and apoptosis. The molecular mechanism that links the NF-κB 
signaling to the recruitment and activation of caspases remains 
unclear. tLR4 and its respective intracellular binding partners, 
MyD88, tRIF, along with the extrinsic Fas-associated death 
domain—caspase 8 pathway, have been shown to mediate LPS-
induced apoptosis. However, questions remain as to how this 
signaling pathway activates the effector proteases of apoptosis 
(31,32). It has been suggested that members of the Bcl-2 family 
play the role of mediator in LPS-induced apoptosis. LPS upreg-
ulates the expression of the proapoptotic Bcl-2 family mem-
bers Bax, and downregulates the levels of the antiapoptotic 

members, such as Bcl-2 (33,34). We next attempted to find 
the change of apoptosis associated gene among the different 
groups in our study. Our results show that in the MyD88-Ko 
NEC groups, caspase 3, caspase 8, caspase 9, and Bax were all 
decreased compared with Wt NEC groups, but not Bcl-2. In 
MyD88-Ko mice with NEC group, the expression of caspase 8  
and caspase 3 were both higher than in the MyD88-Ko control 
group. However, there was no difference in caspase 9 and Bcl-
2 expression between MyD88-Ko mice with or without NEC. 
taken together, we infer that MyD88 is both related to the Fas-
associated death domain—caspase 8 pathway and caspase 9 
pathway gene expression, Bax-mediated apoptosis regulation 
is also regulated by MyD88. However, when treated with LPS 
in MyD88-Ko groups, caspase 9 and bax did not play a part 
in apoptosis regulation but the tLR4/MyD88-independent 
signaling can also be activated and tRIF-mediated the Fas-
associated death domain–caspase 8 pathway can also lead to 
apoptosis in intestinal epithelial cells, but it is not relevant with 
caspase 9 and Bax regulation.

Given these findings, tLR4 downstream mechanism involved 
in NEC was deeply studied and the result showed that the expres-
sion of NF-κB was decreased in MyD88-Ko mice with NEC com-
pared with MyD88-WT mice with NEC, but still greater than 
MyD88-Ko mice without NEC. It was interesting to note that, 
in the MyD88-Ko mice with NEC, the molecular of TRIF and 
IRF-3 that express in the tLR4/MyD88-independent signaling 
was increased compared with the MyD88-WT mice with NEC. 
tLR4 triggers at least two intracellular signaling pathways, one 

Figure 6. Cytokine detection in vivo and vitro. Cytokine levels of (a) IL-1β and (b) IL-6 in cell supernatant at different times after LPS treatment; †P < 0.05 
vs. MyD88-knockdown with LPS at the time by ANOVA; *P < 0.05 vs. WT breast fed control by ANOVA. Representative data from four separate experi-
ments with three times per group. No fill, WT; black fill, MyD88-knockdown strain. The level of (c) IL-1β and (d) TNF-α in intestinal tissue from MyD88 WT 
and MyD88-Ko mice strains exposed to NEC were detected by Liquid chip; †P < 0.05 vs. MyD88−/− with NEC by ANOVA; *P < 0.05 vs. WT breast fed control 
by ANOVA. **P < 0.05 vs. MyD88-Ko breast fed control by ANOVA; data from four separate experiments (n = 5 animals/experimental group). No fill, WT; 
black fill, MyD88-Ko mice. IL, interleukin; NEC, necrotizing enterocolitis; TNF, tumor necrosis factor; WT, wild type.
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mediated by the common tLR adaptor MyD88 and one that 
relies on tRIF. The different intracellular adaptors of tLR4 lead 
to different ways of cell activation; MyD88 activation leads to 
early phase NF-κB activation, among others, IL-1R-associated 
kinase and tNFR-associated factor-6, whereas activation of 
tRIF also leads to NF-κB activation, but with delayed kinetics 
(35). Knowledge of the relative roles of the MyD88-dependent 
and MyD88-independent pathways of tLR4 signaling in host 
defense against pathogens is highly limited. Johnson et al. (36) 
showed that MyD88 exerts its negative regulatory effects upon 
the tRIF-dependent pathway and this may be an epithelial cell-
restricted event, because they did not detect similar regulatory 
pathways within macrophages. This is consistent with our find-
ings in intestinal epithelial cell. It will be interesting to study 
which part of the immune system is responsible for the increased 
inflammation in the MyD88-Ko group. Possible MyD88-Ko-
independent mediators include complement and Ab responses 
and the tRIF pathway of tLR4 signaling.

In conclusion, based on MyD88-Ko mice and a lentivirus-
based RNA interference for Myd88 in intestinal epithelial cell 
lines, our results demonstrate that, with the activation of LPS, 
the crucial tLR4/MyD88-dependent signaling is activated, 
which results in releasing proinflammatory and proapoptotic 
cytokines, so that the destruction of the intestinal mucosa fol-
lowed by the development of NEC. MyD88 knockout signifi-
cantly reduce the severity of inflammation and apoptosis in 
NEC, though MyD88-independent signaling can also be acti-
vated, but is of less dominant for the development of NEC. Our 
findings shed new light on the effects of MyD88-dependent 
tLR4 signaling is crucial in the innate immune response of 
intestinal inflammatory disease.

METHODS
Animals, Cells, and Reagents
Six- to ten-wk-old gender-matched MyD88-Ko mice and matched 
MyD88-WT mice were purchased from Model Animal Research 
Center of Nanjing University, Nanjing, China. Mice were kept in spe-
cific pathogen free conditions and fed by free access to a standard 
diet and water. Eight newborn mice from Wt or MyD88-Ko mice at 
postnatal day 10 were separated from mothers and housed in a self-
made newborns incubator to be NEC induced. As control groups, 
another eight newborn mice from Wt or MyD88-Ko mice were still 
kept with their mothers to feed with breast milk. All animal experi-
ments were conducted according to the guidelines of Animal Use and 
Care Committee at Sichuan University, and executed according to the 
National Animal Welfare Law of China.

IEC-6 and 293t cells were obtained from American type Culture 
Collection and cultured in Dulbecco's modified Eagle’s medium high 
glucose medium (Sigma, St Louis, MO) with 10% fetal bovine serum, 
l-glutamine (0.1 mg/ml), and antibiotics (100 U/ml penicillin and 
0.1 mg/ml streptomycin) at 37 °C in a humidified atmosphere con-
taining 5% CO2.

Experimental NEC and Sampling
NEC was induced in 10-d-old MyD88-Ko or Wt strains by formula 
gavage (Similac Advanced infant formula: Esbilac canine milk replacer 
2:1) five times daily for 3 d. Components comparison between mouse 
milk and formula gavage is shown in Supplementary Table S3 online. 
Animals are fed with 200 μg/5 g of mouse body weight by gavage over 
2–3 min, using a 24-French tubular needle which was placed into the 
mouse esophagus under direct vision. All the NEC mice are exposed 
to intermittent hypoxia (5% O2, 95% N2) for 10 min using a modular 
hypoxic chamber and cold asphyxia stress (10 min, 4 °C) three times 
daily for 3 d. LPS is fed separately by 2 mg/kg of mouse body weight 
daily. Control animals of both strains were breast fed. Animals then 
were killed and samples were obtained, the terminal ileum was har-
vested 1 cm proximal to the ileocecal valve in 10% neutral buffered 
formalin paraffin-embedded, sectioned, and stained with H&E; other 
intestinal were frozen in liquid nitrogen for RNA collection and cyto-
kine measurement.

The cultured cells were divided into 2, 6, 12, and 24 h groups. 
Experimental groups were treated with 50 μg/ml LPS. Control was set for 
each experimental group and treated with phosphate-buffered solution 
(PBS). After stimulation, we collected the cells of every group for RNA 
or protein isolation and the supernatant simultaneously for the detec-
tion of downstream cytokines. Each sample was analyzed in triplicate.

Pathological Evaluation
The severity of experimental NEC was evaluated based on a validated 
scoring system, which quantitatively determines the severity from 0 
(normal) to 3 (severe (37)). The definition for each histological grade 
was as follows: (0), normal (1), mild, separation of the villus core, 
without other abnormalities; (2), moderate, villus core separation, 
submucosal edema, and epithelial sloughing; (3), severe, denudation 
of epithelium with loss of villi, full thickness necrosis, or perforation. 
NEC was thought to be induced when the score was ≥2. Pathological 
evaluation was done by two pathologists in a blind fashion.

TUNEL
tUNEL assay was performed using the in situ cell death detection 
kit (Roche, Mannheim, Germany), according to the manufacturer’s 
instructions. Dewaxed, rehydrated paraffin sections (4 µm) of intesti-
nal tissue were washed in PBS and digested with 20 μg/ml Proteinase 
K (Boehringer, Mannheim, Germany) for 20 min at 37 °C. Following 
washing in PBS, sections were incubated with tUNEL reaction mix-
ture containing tdt and fluorescein-dUtP, at 37 °C for 60 min, fol-
lowed by extensive washing. Finally, a drop of PBS was added to the 
sections before they were analyzed under a fluorescence microscope 
(Olympus, tokyo, Japan). Images of the tissue were obtained using an 
OlympusDD70BX51 image acquisition system (Olympus).

Lentivirus-Mediated RNA Interference for MyD88
Sequences with 100% homology to regions within the open reading 
frame of rat Myd88 (NM_198130 in GENBANK) were selected using 
the siRNA Selection Program of Whitelead institute. The obtained 
sequence 5′-AACAGACAGACtAtCGGCttA-3′ was used to gener-
ate oligonucleotide pairs, which were then annealed and ligated into 
the pPGK-puro-CMV-tGFP vector (Sigma), producing a transfer plas-
mid (pLVshMyD88) that expressed the shRNA of MyD88. The pLVsh-
MyD88, pCMV-dR8.2 dvpr (Sigma), and pCMV-VSVG (Sigma) were 
cotransfected into 293t cells using the method of calcium phosphate 
precipitation. The produced lentiviral particles were harvested at 
72 h after transfection, filtered through a 0.45 μm filter (Millipore, 
Westborough, MA), and kept at −80 °C. The transduction of IEC-6 was 

table 1. Sequences of PCR primers and probe

Gene MyD88 β-actin

Upstream 5′-CTAGCCTTGTTAGACCGTGA-3′ 5′-CGTGAAAAGATGACCCAGAT-3′

Downstream 5′-GTCTGTGGGACACTGCTCT-3′ 5′-ACCCTCATAGATGGGCACA-3′

Taqman 5′-FAM-AGGAGGACTGCCAGAAATACATA-3′ 5′-FAM–TCAACACCCCAGCCATGTACGT–TAMRA-3′

Length 146 bp 159 bp
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performed to achieve maximal downregulation of the MyD88 gene by 
exposing the cells to dilutions of the viral supernatant in the presence 
of polybrene (9 μg/ml; Sigma). Spun the cell culture plates for 30 min 
(22 °C, 1,200g) and incubated overnight. Then, the green fluorescent 
protein positive cells were selected by fluorescence activated cell sorter.

qRT-PCR
total RNA was isolated from the intestinal tissue of mice and cultured 
intestinal epithelium cells, using the RNAiso Plus (tAKARA, tokyo, 
Japan) and reverse transcribed (1 μl of RNA) using the Quantitect 
Reverse transcription Kit (tAKARA). Gene-specific cDNA was 
amplified and quantified in a real-time thermal cycler system (Bio-
Rad, Hercules, CA). PCR amplification was then performed in tripli-
cate. The reaction protocol included preincubation at 95 °C for 15 min 
to activate Amplitaq Gold DNA Polymerase (Applied Bio-systems, 
Foster City, CA) and amplification for 40 cycles (15 s at 95 °C, 30 s 
at 56 °C, and 60 s at 72 °C). β-actin served as internal control. Copy 
number of target genes (relative to β-actin) was defined by 2−ΔΔCt.

Specific primers and taqman probes for MyD88 were designed and 
synthesized (Invitrogen, Carlsbad, CA) and the sequences are listed 
in Table 1. The specific primers sequences encoding target genes of 
NF-κb-p65, TRIF, IRF-3, caspase 3, caspase 8, caspase 9, Bcl-2, and Bax 
are listed in Table 2.

Western Blot
total proteins were prepared from the cultured IEC-6-wt and IEC-6-
MyD88-knockdown cells using total Protein Extraction Kit (Keygen, 
Shanghai, China). Protein concentrations were determined using 
Pierce BCA assay kit (Pierce, Rockford, IL). twenty micrograms 
of protein of each sample was loaded on a 10% SDS-PAGE gel, and 
proteins that are separated by gel electrophoresis were transferred to 
polyvinylidene fluoride membranes. The membranes were then incu-
bated at 4 °C overnight with appropriate primary antibodies diluted 
in their corresponding blocking buffer. (MyD88: rabbit polyclonal 
antibody in 1:500 dilution, Abcam, Cambridge, MA; β-actin: rab-
bit anti-rat antibody in 1:2,000 dilution, Cell Signaling technology, 
Danvers, MA.) After tris-buffered saline with tween washing, the 
membranes were incubated with an HRP-conjugated goat polyclonal 

antirabbit IgG secondary antibody (Sigma) at a dilution of 1:5,000. 
After washing, the membranes were analyzed by the enhanced che-
miluminescence system (Pierce).

Annexin V for Flow Cytometric Detection of Apoptosis
Experimental cultured IEC-6-wt and IEC-6-MyD88−/− cells were col-
lected to detect apoptosis using the APC Annexin V kit (BD, San Diego, 
CA) conjunction with a vital dye 7-Amino-Actinomycin (7-AAD; BD). 
Briefly, 1 × 105 cells were trypsinized (without EDtA), washed twice 
with cold PBS, and then resuspended in 500 μl 1X binding buffer. Five 
microliters of APC Annexin V and 5 μl of 7-AAD were added, gently 
vortex, and incubated for 15 min at 25 °C in the dark. A total of at least 
10,000 events were collected and analyzed by flow cytometry (BD) and 
the apoptotic ratios generated automatically in the Q2 quadrant.

Liquid Chip Multiple Cytokine Assay
Inflammatory cytokines in intestinal tissue and cell supernatant 
were detected by Liquid chip, 0.5–1 g animal tissues from intestinal 
was treated into 20% tissue homogenate in 0.86% cold saline with 
Ultrasonic Cell Disruption System (OMNI Sonic Ruptor 400W; 
Omni International, Kennesaw, GA). The tissues homogenate and 
IEC-6 cell cultural supernatants were centrifuged for 10 min, and the 
supernatants were collected, stored at −80 °C for cytokine analysis on 
Liquid chip by using Liquid Chip cytokine Kits (R&D, Minneapolis, 
MN) according to the manufacturer’s instructions.

Statistical Analysis
Data were reported as mean ± SD and comparisons were made two-
tailed Student’s t-test or ANOVA, with statistical significance accepted 
for P < 0.05. Additional statistical information regarding specific 
comparisons was provided in the figure legends.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at http://
www.nature.com/pr
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